Scalable and private media consumption
with Popcorn

Trinabh Gupta*", Natacha Crooks*®, Whitney Mulhern?,
Srinath Setty®, Lorenzo Alvisi*, and Michael Walfishf

*The University of Texas at Austin
TNew York University

SMIPI-SWS
*Microsoft Research

-

Client
(]

~N

\ﬁ)

Z2ikhtM8Yyd5UYfg==
—

SHZ/ICON9iS3XUB==
—

-

-

Media
server

~

J

&5
©

Why? Because media diet can reveal sensitive information.

Provably

private

T@&f [SEC04] P

e

Attacks: [NDSS14, ESORICS13, ESORICS12, ...]

e

Compatible
with

commercial
streaming

Increases chance of
adoption

[S] Media
Z2ikhtM8Yyd5UYfg== Sl | (ibrar

—
[Client] cee
SHZ/IC9N9iS3XUB== :
Server :
librar

Private Information Retrieval (PIR) provably hides requests but ...

* Each request must touch the entire library.
* There is a tension between overhead and content protection.

* PIR assumes fixed-size objects, but media sizes vary.

Popcorn tailors PIR for media to meet our
three requirements.

Its per-request dollar cost is 3.87x times
that of a non-private baseline.

Rest of this talk

* Background on PIR.

 Design (tailoring of PIR) and evaluation of Popcorn.

Background on Information-theoretic PIR
(ITPIR)

O|11(1(1

s M2|{1]|]0(1]|1

erverl v3lol1lolo

5 (Neftflix)
M5|10(1]|1]|0
[Client] Reply = M1@ M3 @ M5
M3 = (M1@ M3 @ M5) No

@(Ml@ M5) &A collusion

M1(O|1]|1]|1

Server 2 M2j1]0j1]1

(Akamai) M310|1/0]0

M4 |f1|0(|1]|1

M5|10[1]|1]|0

Reply = M1@ M5

ITPIR CPIR

cheap operations (XORs) expensive operations
(up to 10x ITPIR)

process entire library per process entire library per
request request
does not respect respects controls
controls on content on content
dissemination dissemination

Given these, how can we build a system that is low cost
and compatible with commercial streaming?

Popcorn composes ITPIR and CPIR to get
desirable properties from both

Key Enc(M1)
Library Enc(M2)
CPIR [Netflix] Enc(M3)

Enc(M4)
Enc(M5)
l Client ITPIR different

domains

Enc(M1)
Enc(M2)
Enc(M3)
Enc(M4)
Enc(M5)

[Akamai |

ITPIR CPIR Popcorn

cheap operations expensive operations mostly cheap

(XORs) (5-10x ITPIR) operations
does not respect respects controls respects controls
controls on content on content on content
dissemination dissemination dissemination
process entire process entire I

library per request library per request

Popcorn batches requests to amortize the
overhead of ITPIR

. ML|O|1]|1|1| €=
Request=1, 3,5 M2|11(0|1]|1
1,3,4,5 M3|0[1|0]0
1,4 M4|1]|0]1]1
M5(0|1(|1]|0

Reply = M1@ M3 @ M5
Reply = M1@ M3 @ M4@ M5
Reply = M1@ M4

Observation: Same I/O work for each request!

Benefits of batching:
* |/O transfers are amortized.

* CPU cycles are reduced as matrix multiplication algorithms
exploit cache locality.

Strawman: Group requests that arrive
during an epoch

client A client B c?

time
epoch—» start handling
A, B, C
playback position
client A L
‘
wait for
server to
form batch client A’s playback buffer

-« >
client perceived delay = epoch + epsilon

Strawman: Group requests that arrive
during an epoch

client A client B client C

time
start handling
A, B, C

AR

Small epoch, small batch, small delay Large epoch, large batch, large delay

Issue: Hard to get both a small delay and a large
batch "

Popcorn exploits streaming to form large
batches with small startup delay

client chunks of a movie
3 perceived l
delay (d)
d+t t=time to
— d + 2t consume a
» d+ 3t chunk
—)p
server i
[P B S R ¥ i

* Inspired by pyramid broadcasting [MMCN95]

Other design considerations

* Popcorn must handle variable-sized media objects.

Response: Change bitrates to make movies of the same
Size.

Outline

v'Background on PIR.
v'Design (tailoring of PIR) of Popcorn.

* Evaluation of Popcorn.

Experiment method

Baselines:

. Non-private system (Apache server)

e State-of-the-art CPIR [XPIR PETS16]

e State-of-the-art ITPIR [Percy++] modified to support streaming
. CPIR and ITPIR extended with the strawman batching scheme

Netflix-like library: 8000 movies, 90 minutes, 4Mbps

Workload: 10K clients arrive within 90 minutes according to a
Poisson process

Estimate per-request dollar cost using Amazon’s pricing model
. CPU: S0.0076/hour

. |/O bandwidth: $0.042/Gbps-hour

. Network: S0.006/GB

System

Non-private

CPIR

ITPIR

ITPIR++
(delay 15s)

ITPIR++
(delay 10min)

Popcorn
(delay 15s)

CPUs

11.6

3.1

0.65

0.41

0.74

/0
(Gbps)

64

64

0.058

0.23

Network
(relative to

non-private)
1x

5x

2X

2X

2X

2X

S relative

to non-
private

1x

265x

256x

14x

2.5%

3.87x

17

Related work

Improving performance of PIR.
e Distributing work [Fc13, TDsc12], cheaper crypto [PETS16, ESORICS14, ISC10,

TKDE13, WEWoRC07], bucketing [DBSec10, PETS10], batching [Fc15, Joco4],
secure CO-processors [PET03, FAST13, NDSS08, IBM Systems Journal01]

Protecting library content in ITPIR [ranpomss, s&P07, WPES13]

Handling variable-sized objects [ccswia, NDss13]
Prior PIR implementations [percy++, PETS16, CCSW14]

Video-on-demand mmcnos)

18

Take-away points

* It is possible to build a private, backwards
compatible, and low-cost media delivery system ...

e ... by tailoring PIR to media delivery.

* The per-request cost in Popcorn is 3.87x that of a
non-private baseline.

