CubicRing:
Enabling One-Hop Failure Detection/Recovery
In Distributed In-Memory Storage Systems

Yiming Zhang, Chuanxiong Guo, Dongsheng Li,
Rui Chu, Haitao Wu, Yonggiang Xiong

NSDI 2015

Background

« Traditional disk-based storage systems
— Use RAM as a cache
— App servers + storage servers + cache servers

— Facebook keeps more than 75% of its online data in its
memcached servers (2011)

Application Servers

« Disk-based storage issues
— I/O latency and bandwidth
— Cache consistency

Memcached Storage Servers

In-Memory Storage Systems

Application Servers

Use RAM as persistent storage
— Data is kept entirely in the RAM

Redis

— An in-memory key-value store with rich data
model

C M E M Storage Servers

— Tencent’s pubic in-memory key-value store service
— Stores several tens of TB of data of online games

RAMCloud

— Uses InfiniBand to achieve 10-us level I/O latency
— Boosts the performance of online data-intensive app

Network Related Challenges for
In-Memory Storage

« False failure detection
— Transient network problems vs. real server failures

* Recovery traffic congestion

— Thousands of recovery flows bring network congestion
which results in long recovery time

« ToR switch failures

— When a ToR switch fails, all its servers are considered
dead and several TB of data may need to be recovered

Solution: CubicRiIng

* One-hop failure detection
— Shorten the paths that heartbeats have to traverse

 Avoid traffic congestion

— Restrict the recovery traffic within the smallest
possible range

* Avoid single failure for ToR switch

— Build the in-memory storage system on a multi-
homed cubic topology

e Structure
 Failure Recovery

 Evaluation

Primary-Recovery-Backup

* Primary-recovery-backup
— Only one primary copy Is stored in the RAM

— Redundant backup copies are stored on disks

« Fast recovery requires 10+ GB aggregate recovery
throughput

— Also adopted by RAMCloud
— But cannot handle the network-related challenges

\\\\I“e
ack D) . (D

O

.‘ }) g
' Nata center network
’ ‘ backup
| @

™ pr o
() Primary server
D o
) Backup server

e
xﬁ;‘ Recovery server

Primary-Recovery-Backup

* Primary-recovery-backup
— Only one primary copy Is stored in the RAM

— Redundant backup copies are stored on disks

« Fast recovery requires 10+ GB aggregate recovery
throughput

— Also adopted by RAMCloud
— But cannot handle the network-related challenges

ead
e

™ pr o
() Primary server
D o
) Backup server

e
xﬁ;‘ Recovery server

Primary-Recovery-Backup

* Primary-recovery-backup
— Only one primary copy Is stored in the RAM

— Redundant backup copies are stored on disks

« Fast recovery requires 10+ GB aggregate recovery
throughput

— Also adopted by RAMCloud
— But cannot handle the network-related challenges

recover

™ pr o
() Primary server
D o
) Backup server

e
xﬁ;‘ Recovery server

Directly-Connected-Tree

 Basic idea

v'Restrict failure detection and recovery traffic
within the smallest possible range (i.e. 1-hop)

» Exploiting DCN proximity
v'Form a directly-connected-tree

v'Primary-recovery: 1-hop detection
v Recovery-backup: 1-hop recovery

()
. e
(; Primary s
o~ o I S« S
W, Backup tgg ?X ¥
W Recovery's e //\ Ay Ay o
N N A N AN RN A N AN AN

&/ k/

From Tree to Cube

« Embed the trees into cubic DCN
v Each server equally plays all the three roles
* Generalized hypercube
v'Each vertex can be viewed as the root of a tree

 BCube is a recursively defined network

v'A BCube(4,1) is constructed from 4 BCube(4,0) and
4 4-port switches

Level 1

<1,0> <1,1> <1,2> <1,3>

CubicRing on BCube

CubicRing

— Three layer of rings: primary ring,
recovery ring, backup ring

 Primary ring

— All servers in BCube are primary
servers.

— The whole key space is mapped into
the primary ring

N

) Primary server

™
) Backup server

: : C N NN aa
@RLCOWWS“W“ 0 -0 O U

CubicRing on BCube(cont.)

 Recovery ring
— Recovery servers of P are 1-hop to P
« Backup ring
— Backup servers 1-hop to R and
2-hop to P

Prlmary server

f\ Backup server

@ Recovery server

CubicRIng Property

* CubicRing for BCube(n, k)
— # of primary servers
e P = nk+1
— # of recovery servers for each primary server
« R=(n-1)(k+1)
— # of backup servers for each primary server
« B = (n-1)2k(k+1)/2
* CubicRing has plenty of primary, recovery
and backup servers
— BCube(16,2),
- P =4096, R =45,B=675

e Structure
* Failure Recovery

 Evaluation

15

Failure Detection

 Heartbeats

— Primary servers periodically send heartbeats to
their recovery servers

 Confirmation of server failure

— If a recovery server does not receive heartbeats,
it will report this server failure to a coordinator

— The coordinator verifies the server failure

Lewvel 1

<1,0=
T

<1.3>

i’ Leve l,-ﬁ B

/<0,0>

— - |
- - - i
= - T - r - I -:-_ r
T 1 o |
I - — |
I e A 1
1 I o F- 1
1 1 I~ L] —— | =]
b | e : e :
| I i 1 R
| | | - fo T I
¥ 1 - 5 W
| I . foo [N T _}_
| e Y 1
I i 1 | I
1 1 | 1
1 1 I 1
1 1 1 1
1 _ _ L L 1

- <1,0= <1, 1= <{,2=>
Fallure Recovery = /a1
» Primary server [N S NN
fallure i’im 11 12135%2021222:35;&50313233'

|
S T S B I S

Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failures
Recover backup data Tor primary server failure*
Resume relevant services

Recover from recovery server failure*

8: Recover from backup server failure

9: end procedure

1
2
3:
4
5

~ O

17

All the recoveries with * are performed concurrently.

Failure Recovery

* Primary server
failure

Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure”
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failure*

8: Recover from backup server failure

9: end procedure

1
2:
3:
4
5

~ O

18

All the recoveries with * are performed concurrently.

Failure Recovery

Level6 I I%_ >N)<
- Recovery server el g ey
failure 666, GO |

Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure™
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failurs*

8: Recover from backup server failure

9: end procedure

1
2:
3:
4
5

]

19

All the recoveries with * are performed concurrently.

Level 1

] <1,0> <1, 1= <1,2=>
Failure Recovery o4 .~
Levalo N TS ST 7T
0,0> [/ \ | R N s » <0,3>\
« Backup server @ S
. ., LAY A - /N ™~ FANTRN
failure B0 P0G, B DAY

3

Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure™
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failure*

8: Recover from backup server failure>
9: end procedure

1
2:
3:
4
5

~ O

20
All the recoveries with * are performed concurrently.

Single Server Failure Recovery

« Summarization
— Most of recoveries are 1-hop

— Concurrent recoveries have little contention

Recovery type | Size' | From/to® | |Length | # flows’
Primary data of o B—R 1-hop br
primary server

Backup data of o B—B 1-hop b*r
primary server B—R

Recovery server | < « R—B I-hop | | (b—1)br
Backup server fo B—R 2-hop | | f(b—1)br

l . . .

Total recovered size (assume a primary server stores o primary data).
2 . e .

From the perspective of a failed primary server. R: recovery server.

B: backup server. Bottleneck is R’s inbound network bandwidth.

3 . WU .
flows after the 1% failure. b: # backup servers on the backup ring.

r: # recovery servers on the recovery ring. f: disk replication factor.

21

e Structure
 Failure Recovery

« Evaluation

22

Implementation

: Primary Recovery Backup
Cll.ent - seryer seryer seryer

* MemCube dset()
B
— Memcached-1.4.15 2 aopo
— Linux (CentOS 6.4) 2z Backup-ac)
£ [per ek

« MemCube components

— Connection manager: Maintains the status of neighbors and
Interacts with other servers

— Storage manager: Handles RAM 1/O requests and
asynchronously writes backup data to disks

— Recovery manager: Reconstructs primary/backup data on the
new primary/backup servers

23

Testbed

012345 67 89 101112131415 1617181920212223 24252627 282930313233343536373839 404142434445 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63

)
{

Y
A%

/

y

)

/

i)
Vs

§
\
i

)

A

/

Al

/\

v

ity
il

A Lo««o

(I %«”&& M.

WA
i

},

\
)

|
A

0)
NS
il i
A

é“..* /..& \Aﬂq /O

N

)
{/
\
)i

{

I

I
i

\

A

A

W_

1o

i

Jliss
S
e

/3
\

)%
A

N

—_—— e e e o

iy |

-

S} |

Server Failure Recovery

« Recovers 48 GB of data in 3.1 seconds
« Aggregate recovery throughput: 123.9 Gb/sec
« 88.5% of the ideal aggregate bandwidth

S50 ' ' ' . .

4_x,%-)(' ¥X

m 45 o 3¢ B XXL 7
.g-;_\ _ ";)(-e-'l'x-)f: o A

= 40 XX i

— T '

s 35 ' 7

A 30)

o]

L 25 7

o

2 20 7

[

§ 15 7

) MemCube —+—

= 10 RAMCloud on Tree (1:16) --->---

co 5 o RAMCloud on FatTree (1:4) - = _

= “ RAMCloud on FatTree (1:1)

on 0 & I | I |

< 0 2 4 6 8 10 12 14 16 18

Time (sec)

Server Failure Recovery

 Simulations

(n,k) 43) | 3,2) | 33) | (d6,1) | (16,2)
servers 256 | 512 | 4096 | 256 | 4096

MemCube .20 | 1.01 | 0.1 144 | 048

RAMCloud | 26.59 | 4298 | 83.40 | 22.68 | 40.59

Different # Recovery Servers

* Recovery bandwidth vs. fragmentation
v"More recovery servers result in higher throughput
v"And higher fragmentation

1 | | | |

% 4 0.14

= 095 F :

<

E - 012 o

o) 0.9 % g

2 esb T - o1 &

‘g 08 + TTTe-al m : .
e] E

M 0.8 B G T 1 0.08 §

=

g 0.75 4 0.06 Q

= -

3 07r 1004 E

‘5;3 0.65 Aggregate bandwidth —+— -1 0.02

o Fralg. ratio (1 failure) ---X---

< 0.6 ' I | 0

9 10 11 12 13 14

Recovery Servers per Primary Server

Different # Backup Servers

* Recovery bandwidth

v'When # backup servers is small, their aggregate
bandwidth may become the bottleneck

1

=
o]

N 0.98 -
S 096 T
2 0.94 .
% 0.92 -
ala) 0.9 -
o

5 0.88 -
§ 0.86 -
a% 0.84 -
= 9 -
g0 082, Aggregate bandwidth —+—
<« 0.8 1 1 I |

2 3 4 5 6 7
Backup Servers per Recovery Server

° |n_

Related Work

memory storage

— Redis
— CMEM
— RAMCloud

 Failure detection and recovery

Phi-accrual detector
~alcon and Pigeon
Host failure recovery (e.g., microreboot)

~lat Datacenter Storage
 Locality-oblivious parallel recovery

29

Conclusion

* CubicRing
— Exploits network proximity to restrict failure
detection and recovery within 1-hop

« MemCube: in-memory key-value store

— Leverages the CubicRing structure for fast
failure detection and recovery

— Maintains the CubicRing structure against
failures

30

Q&A

31

