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Background

« Traditional disk-based storage systems
— Use RAM as a cache
— App servers + storage servers + cache servers

— Facebook keeps more than 75% of its online data in its
memcached servers (2011)

Application Servers

« Disk-based storage issues
— I/O latency and bandwidth
— Cache consistency

Memcached Storage Servers




In-Memory Storage Systems

Application Servers

Use RAM as persistent storage
— Data is kept entirely in the RAM

Redis

— An in-memory key-value store with rich data
model

C M E M Storage Servers

— Tencent’s pubic in-memory key-value store service
— Stores several tens of TB of data of online games

RAMCloud

— Uses InfiniBand to achieve 10-us level I/O latency
— Boosts the performance of online data-intensive app




Network Related Challenges for
In-Memory Storage

« False failure detection
— Transient network problems vs. real server failures

* Recovery traffic congestion

— Thousands of recovery flows bring network congestion
which results in long recovery time

« ToR switch failures

— When a ToR switch fails, all its servers are considered
dead and several TB of data may need to be recovered



Solution: CubicRiIng

* One-hop failure detection
— Shorten the paths that heartbeats have to traverse

 Avoid traffic congestion

— Restrict the recovery traffic within the smallest
possible range

* Avoid single failure for ToR switch

— Build the in-memory storage system on a multi-
homed cubic topology



e Structure
 Failure Recovery

 Evaluation



Primary-Recovery-Backup

* Primary-recovery-backup
— Only one primary copy Is stored in the RAM

— Redundant backup copies are stored on disks

« Fast recovery requires 10+ GB aggregate recovery
throughput

— Also adopted by RAMCloud
— But cannot handle the network-related challenges
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Primary-Recovery-Backup

* Primary-recovery-backup
— Only one primary copy Is stored in the RAM

— Redundant backup copies are stored on disks
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Directly-Connected-Tree

 Basic idea

v'Restrict failure detection and recovery traffic
within the smallest possible range (i.e. 1-hop)

» Exploiting DCN proximity
v'Form a directly-connected-tree

v'Primary-recovery: 1-hop detection
v Recovery-backup: 1-hop recovery
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From Tree to Cube

« Embed the trees into cubic DCN
v Each server equally plays all the three roles
* Generalized hypercube
v'Each vertex can be viewed as the root of a tree

 BCube is a recursively defined network

v'A BCube(4,1) is constructed from 4 BCube(4,0) and
4 4-port switches

Level 1

<1,0> <1,1> <1,2> <1,3>




CubicRing on BCube

CubicRing

— Three layer of rings: primary ring,
recovery ring, backup ring

 Primary ring

— All servers in BCube are primary
servers.

— The whole key space is mapped into
the primary ring
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CubicRing on BCube(cont.)

 Recovery ring
— Recovery servers of P are 1-hop to P
« Backup ring
— Backup servers 1-hop to R and
2-hop to P

Prlmary server

f\ Backup server

@ Recovery server




CubicRIng Property

* CubicRing for BCube(n, k)
— # of primary servers
e P = nk+1
— # of recovery servers for each primary server
« R=(n-1)(k+1)
— # of backup servers for each primary server
« B = (n-1)2k(k+1)/2
* CubicRing has plenty of primary, recovery
and backup servers
— BCube(16,2),
- P =4096, R =45,B=675




e Structure
* Failure Recovery

 Evaluation
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Failure Detection

 Heartbeats

— Primary servers periodically send heartbeats to
their recovery servers

 Confirmation of server failure

— If a recovery server does not receive heartbeats,
it will report this server failure to a coordinator

— The coordinator verifies the server failure
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Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failures
Recover backup data Tor primary server failure*
Resume relevant services

Recover from recovery server failure*

8: Recover from backup server failure

9: end procedure
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All the recoveries with * are performed concurrently.




Failure Recovery

* Primary server
failure

Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure”
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failure*

8: Recover from backup server failure

9: end procedure
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All the recoveries with * are performed concurrently.




Failure Recovery
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Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure™
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failurs*

8: Recover from backup server failure

9: end procedure
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All the recoveries with * are performed concurrently.
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Pseudocode 1: Single server failure recovery
. procedure RECOVERFAILURES(FailedServer F)

Pause relevant services

Reconstruct key space mapping of £

Recover primary data for primary server failure™
Recover backup data for primary server failure*
Resume relevant services

Recover from recovery server failure*

8:  Recover from backup server failure>
9: end procedure
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Single Server Failure Recovery

« Summarization
— Most of recoveries are 1-hop

— Concurrent recoveries have little contention

Recovery type | Size' | From/to® | |Length | # flows’
Primary data of o B—R 1-hop br
primary server

Backup data of o B—B 1-hop b*r
primary server B—R

Recovery server | < « R—B I-hop | | (b—1)br
Backup server fo B—R 2-hop | | f(b—1)br

l . . .

Total recovered size (assume a primary server stores o primary data).
2 . e .

From the perspective of a failed primary server. R: recovery server.

B: backup server. Bottleneck is R’s inbound network bandwidth.

3 . WU .
# flows after the 1% failure. b: # backup servers on the backup ring.

r: # recovery servers on the recovery ring. f: disk replication factor.
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e Structure
 Failure Recovery

« Evaluation
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Implementation

: Primary Recovery Backup
Cll.ent - seryer  seryer  seryer

* MemCube dset()
B
— Memcached-1.4.15 2 aopo
— Linux (CentOS 6.4) 2z  Backup-ac)
£ [per ek

« MemCube components

— Connection manager: Maintains the status of neighbors and
Interacts with other servers

— Storage manager: Handles RAM 1/O requests and
asynchronously writes backup data to disks

— Recovery manager: Reconstructs primary/backup data on the
new primary/backup servers
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Testbed
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Server Failure Recovery

« Recovers 48 GB of data in 3.1 seconds
« Aggregate recovery throughput: 123.9 Gb/sec
« 88.5% of the ideal aggregate bandwidth
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Server Failure Recovery

 Simulations

(n,k) 43) | 3,2) | 33) | (d6,1) | (16,2)
# servers 256 | 512 | 4096 | 256 | 4096

MemCube .20 | 1.01 | 0.1 144 | 048

RAMCloud | 26.59 | 4298 | 83.40 | 22.68 | 40.59




Different # Recovery Servers

* Recovery bandwidth vs. fragmentation
v"More recovery servers result in higher throughput
v"And higher fragmentation
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Different # Backup Servers

* Recovery bandwidth

v'When # backup servers is small, their aggregate
bandwidth may become the bottleneck

1

=
o ]

N 0.98 -
S 096 T
2 0.94 .
% 0.92 -
ala) 0.9 -
o

5 0.88 -
§ 0.86 -
a% 0.84 -
= 9 -
g0 082, Aggregate bandwidth —+—
<« 0.8 1 1 I |

2 3 4 5 6 7
# Backup Servers per Recovery Server



° |n_

Related Work

memory storage

— Redis
— CMEM
— RAMCloud

 Failure detection and recovery

Phi-accrual detector
~alcon and Pigeon
Host failure recovery (e.g., microreboot)

~lat Datacenter Storage
 Locality-oblivious parallel recovery
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Conclusion

* CubicRing
— Exploits network proximity to restrict failure
detection and recovery within 1-hop

« MemCube: in-memory key-value store

— Leverages the CubicRing structure for fast
failure detection and recovery

— Maintains the CubicRing structure against
failures
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Q&A
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