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Use cases:
- User activity logs
- Monitoring remote infrastructures
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Collected across several data
centers for low user latency









SQL analytics across geo-distributed data to extract insight

current solution: centralize
- copy all data to central data center

- run all queries there

10s-100s TB/day
up to 10s of DCs
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current solution: copy all data to central DC, run all analytics there

Centralized approach i1s inadequate

1. Consumes scarce, expensive cross-DC bandwidth

2. Incompatible with sovereignty concerns
- Many countries considering restricting moving citizens’ data
- Could render centralization impossible
- Speculation: derived information might still be acceptable
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Geo-distributed SQL analytics
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Geo-distributed SQL analytics

SQL query:
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Geo-distributed SQL analytics

SQL guery:

DC,
— | reprocess
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Centralized execution: 10 TB/day Distributed execution: 0.03 TB/day
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Geo-distributed SQL analytics

Optimizations: synthesize and extend ideas from

- Parallel and distributed databases
- Distributed systems
... as well as novel techniques of our own

Common thread: revisit classical database problems from
networking perspective



PROBLEM DEFINITION



Requirements

Possible challenges to address
Bandwidth
Sovereignty
Fault-tolerance
Latency
Consistency

We target the batch analytics dominant in organizations today



Key characteristics

Support full relational model

No control over data partitioning
- Dictated by external factors, typically end-user latency

Cross-DC bandwidth is scarcest resource by far
- CPU, storage etc within data centers are relatively cheap

Unique constraints
- Heterogeneous bandwidth costs/capacities
- Sovereignty

Bulk of load comes from ~stable recurring workload
- Consistent with production logs



Problem statement

Given: data born distributed across DCs a certain way

Goal: support SQL analytics on this data
- Minimize bandwidth cost
- Handle fault-tolerance, sovereignty constraints

System will handle arbitrary queries at runtime

- But will be tuned to optimize known ~stable recurring workload



OUR APPROACH



Basic Architecture

Queries

&

Coordinator

Reporting Results

pipeline

Single-DC SQL stack
[Hive]

Local : ETL

End-user facing DB
(handles OLTP)

......
., .
--------




Optimizations

Function-specific

SQL-aware

workload planning

Runtime

data transfer reduction

semantic
level
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1. Runtime data transfer optimization

In our setting
- CPU, storage, ... within data centers is cheap
- Cross-DC bandwidth is the expensive resource

Trade off CPU, storage for bandwidth reduction
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aggressively cache all intermediate output

DCa DCs

t=0 DCg asks DCa for results of subquery g



1. Runtime data transfer optimization

aggressively cache all intermediate output




1. Runtime data transfer optimization

aggressively cache all intermediate output

t=1 DCg asks DCa for results of subquery g
again



1. Runtime data transfer optimization

aggressively cache all intermediate output

t=1 DCg asks DCa for results of subquery g
again



1. Runtime data transfer optimization

aggressively cache all intermediate output

recompute g1 from scratch

- not using caching to save latency, CPU
- only bandwidth
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1. Runtime data transfer optimization

aggressively cache all intermediate output

Caching helps not only when same query arrives repeatedly
... but also when different queries have common sub-operations
e.g. 6x data transfer reduction in TPC-CH

Database parallel: caching = view materialization
* Caching is a low-level, mechanical form of view maintenance
+ Works for arbitrary computations, including arbitrary UDFs
— Uses more CPU, storage

— Can miss opportunities
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2. SQL-aware workload planning

Given

- Stable workload (set of queries)
- Fault-tolerance and sovereignty constraints

Jointly optimize
- Query plan
- Site selection (task scheduling)

- Data replication
» Replicate data for performance and/or fault-tolerance

to minimize data transfer cost
Challenge: optimization search space is exponentially large

Approach: simplify search space



2. SQL-aware workload planning

Simplification
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2. SQL-aware workload planning

Simplification

. Big table U@
@ Smalltable Japan

US

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

Decision 2: which copy of the small table do we use?
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2. SQL-aware workload planning

Had two kinds of decisions to make:

1. Logical plan
- Do we copy the big table or the small table?
- Choice was clear, strategies were orders of magnitude apart

2. Physical plan
- Which copy of the small table do we use?
- Choice wasn’t as obvious, had to know precise costs



2. SQL-aware workload planning

Simplification: Two-phase approach

1. Logical plan

- Choose based on simple statistics on each table

2. Physical plan
- Profile logical plan, collecting precise measurements
- Use to optimize physical plan

Key insight
- “Logical” choices: simple statistics usually suffice

|”

- “Physical” choices: need more careful cost estimates
- Only an empirical insight

» But worked well in all our experimental workloads
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2. SQL-aware workload planning

Profiling task graphs

partial
aggregate
SELECT city,
SUM(orderValue) GNg Merge

FROM sales
WHERE category = ‘Electronics’
GROUP BY city want to

measure

Distributed deployment:




2. SQL-aware workload planning

Profiling task graphs

partial
aggregate

SELECT city,

SUM(orderValue)
FROM sales
WHERE category = ‘Electronics’

GROUP BY city

want to
measure

Centralized deployment:

inject filter
WHERE country = “US”

-
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2. SQL-aware workload planning

Profiling task graphs

Pseudo-distributed execution

Rewrite query DAGs to simulate alternate configurations

Fully general what-if analysis. Use cases:
- Bootstrap: centralized -> distributed
- Test alternate data replication strategies

- Simulate adding/removing data centers




2. SQL-aware workload planning

1. Query Planner

2. Profiler
profiled profiled
DAG 1 DAG n
4 p ,
schedule tasks to DCs, 3. Integer Linear
kdecide data replication policy) Program

l



Optimizations

3. Function-specific

1. Runtime



Optimizations

3. Function-specific

2. SOL-aware

1. Runtime



3. Function-specific optimizations

Past work: large number of distributed algorithms
targeting specific problems

Support via extensible user-defined function interface

- Allows registering multiple implementations
- Optimizer will automatically choose best, based on profiling

As examples, implemented
- Top-k
- Approximate count-distinct %

(11 “Efficient top-k query computation in distributed networks”
P. Cao, Z. Wang, PODC 2004

2l “HyperLoglLog: the analysis of a near-optimal cardinality estimation algorithm”
P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, AOFA 2007



EVALUATION



Implemented Hadoop-stack prototype

- Prototype multi-DC replacement for Apache Hive

Experiments up to 10s of TBs scale
- Real Microsoft production workload

- Several synthetic benchmarks:
» TPC-CH
» BigBench-SQL
» Berkeley Big-Data
» YCSB
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Microsoft production workload
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Berkeley Big-Data
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BEYOND SQL



Beyond SQL: DAG workflows

Computational model: directed acyclic task graphs,
each node = arbitrary computation

Significantly more challenging setting

Initial results encouraging

- Same level of improvement as SQL

More details: [CIDR 2015]

[CIDR 2015] “WANalytics: Analytics for a geo-distributed data-intensive world”
Vulimiri, Curino, Godfrey, Karanasos, Varghese



RELATED WORK

Distributed and parallel databases
Single-DC frameworks (Hadoop/Spark/...)
Data warehouses

Scientific workflow systems

Sensor networks

Stream processing systems (e.g. JetStream)



Key characteristics

. Support full relational model at 100s TBs/day scale

. No control over data partitioning

. Focus on cross-DC bandwidth

. Unique constraints

- Heterogeneous bandwidth costs/capacities
- Sovereignty

. Assumption of ~stable recurring workload
- Enables highly tuned optimization



SUMMARY

Centralized analytics becoming unsustainable
Geo-distributed analytics: SQL and DAG workflows

Several novel techniques

- Redundancy elimination via caching
- Pseudo-distributed measurement

- [SQL query planner + ILP] optimizer

Up to 360x less bandwidth on real & synthetic workloads
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BACKUP SLIDES



Caching and view selection

Consider SELECT val - avg(val) FROM table

Cutpoint selection problem: do we cache

- Base [val], or
- Results after average has been subtracted

Akin to view selection problem in SQL databases

Current implementation makes wrong choice



Sovereignty: Partial support

Our system respects data-at-rest regulations
(e.g. German data should not leave Germany)

But we allow arbitrary queries on the data

Limitation: we don’t differentiate between

- Acceptable queries, e.g.
“what’s the total revenue from each city”

- Problematic queries, e.g.
SELECT * FROM Germany



Sovereignty: Partial support

Solution: either

- Legally vet the core workload of queries
- Use differential privacy mechanism

Open problem



Past work



