Global analytics in the face of bandwidth and regulatory constraints

Ashish Vulimiri^u
Thomas Jungblut^m

Carlo Curino^m
Jitu Padhye^m

Brighten Godfrey^u George Varghese^m

uUIUC

^mMicrosoft

Massive data volumes

Facebook	,
----------	---

Twitter

Microsoft

LinkedIn

™ Yahoo!

600 TB/day

100 TB/day

10s TB/day

10 TB/day

10 TB/day

Massive data volumes

Facebook 600 TB/day

Twitter 100 TB/day

Microsoft 10s TB/day

in LinkedIn 10 TB/day

Yahoo! 10 TB/day

Use cases:

- User activity logs
- Monitoring remote infrastructures

- ...

Collected across several data centers for low user latency

SQL analytics across geo-distributed data to extract insight

current solution: centralize

- copy all data to central data center
- run all queries there

10s-100s TB/day up to 10s of DCs

Centralized approach is inadequate

1. Consumes scarce, expensive cross-DC bandwidth

Centralized approach is inadequate

1. Consumes scarce, expensive cross-DC bandwidth

rising costs

external network is fastest rising DC cost

slowing growth

scarce capacity

recognized concern

several other efforts to reduce wide-area traffic e.g. SWAN, B4

Centralized approach is inadequate

- 1. Consumes scarce, expensive cross-DC bandwidth
- 2. Incompatible with sovereignty concerns
 - Many countries considering restricting moving citizens' data
 - Could render centralization impossible
 - Speculation: derived information might still be acceptable

Centralized approach is inadequate

- 1. Consumes scarce, expensive cross-DC bandwidth
- 2. Incompatible with sovereignty concerns

SQL query:

Centralized execution: 10 TB/day

SQL query:

Centralized execution: 10 TB/day

Distributed execution: 0.03 TB/day

SQL query:

Centralized execution: 10 TB/day

Distributed execution: 0.03 TB/day

Optimizations: synthesize and extend ideas from

- Parallel and distributed databases
- Distributed systems

... as well as novel techniques of our own

Common thread: revisit classical database problems from networking perspective

PROBLEM DEFINITION

Requirements

Possible challenges to address

Bandwidth

Sovereignty

Fault-tolerance

Latency

Consistency

We target the batch analytics dominant in organizations today

Key characteristics

- 1. Support full relational model
- 2. No control over data partitioning
 - Dictated by external factors, typically end-user latency
- 3. Cross-DC bandwidth is scarcest resource by far
 - CPU, storage etc within data centers are relatively cheap
- 4. Unique constraints
 - Heterogeneous bandwidth costs/capacities
 - Sovereignty
- 5. Bulk of load comes from ~stable recurring workload
 - Consistent with production logs

Problem statement

Given: data born distributed across DCs a certain way

Goal: support SQL analytics on this data

- Minimize bandwidth cost
- Handle fault-tolerance, sovereignty constraints

System will handle arbitrary queries at runtime

- But will be tuned to optimize known ~stable recurring workload

OUR APPROACH

Basic Architecture

SQL-aware workload planning

Runtime

data transfer reduction

semantic level

3. Function-specific

2. SQL-aware

1. Runtime

3. Function-specific

2. SQL-aware

1. Runtime

In our setting

- CPU, storage, ... within data centers is cheap
- Cross-DC bandwidth is the expensive resource

Trade off CPU, storage for bandwidth reduction

aggressively cache all intermediate output

t = 0 DC_B asks DC_A for results of subquery q

aggressively cache all intermediate output

aggressively cache all intermediate output

t = 1 DC_B asks DC_A for results of subquery q again

aggressively cache all intermediate output

t = 1 DC_B asks DC_A for results of subquery q again

aggressively cache all intermediate output

recompute q₁ from scratch

- not using caching to save latency, CPU
- only bandwidth

aggressively cache <u>all intermediate output</u>

Caching helps not only when same query arrives repeatedly

... but also when different queries have common sub-operations

e.g. 6x data transfer reduction in TPC-CH

aggressively cache all intermediate output

Caching helps not only when same query arrives repeatedly

... but also when different queries have common sub-operations

e.g. 6x data transfer reduction in TPC-CH

<u>Database parallel</u>: caching ≈ view materialization

- Caching is a low-level, mechanical form of view maintenance
- + Works for arbitrary computations, including arbitrary UDFs
- Uses more CPU, storage
- Can miss opportunities

3. Function-specific

2. SQL-aware

1. Runtime

3. Function-specific

2. SQL-aware

1. Runtime

2. SQL-aware workload planning

Given

- Stable workload (set of queries)
- Fault-tolerance and sovereignty constraints

Jointly optimize

- Query plan
- Site selection (task scheduling)
- Data replication
 - Replicate data for performance and/or fault-tolerance

to minimize data transfer cost

Challenge: optimization search space is exponentially large

Approach: simplify search space

2. SQL-aware workload planning

Simplification

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

2. SQL-aware workload planning

Simplification

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

Simplification

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

Decision 2: which copy of the small table do we use?

Had two kinds of decisions to make:

1. Logical plan

- Do we copy the big table or the small table?

2. Physical plan

- Which copy of the small table do we use?

Had two kinds of decisions to make:

1. Logical plan

- Do we copy the big table or the small table?
- Choice was clear, strategies were orders of magnitude apart

2. Physical plan

- Which copy of the small table do we use?
- Choice wasn't as obvious, had to know precise costs

Simplification: Two-phase approach

1. Logical plan

- Choose based on simple statistics on each table

2. Physical plan

- Profile logical plan, collecting precise measurements
- Use to optimize physical plan

Key insight

- "Logical" choices: simple statistics usually suffice
- "Physical" choices: need more careful cost estimates
- Only an empirical insight
 - But worked well in all our experimental workloads

Profiling task graphs

SELECT city,
SUM(orderValue)
FROM sales
WHERE category = 'Electronics'
GROUP BY city

Distributed deployment:

Profiling task graphs

SELECT city,
SUM(orderValue)
FROM sales
WHERE category = 'Electronics'
GROUP BY city

partial

Distributed deployment:

US DC OGB UK DC 63 GB Coordinator DC Japan DC

Centralized deployment:

Profiling task graphs

CELECT .:t.

Pseudo-distributed execution

Rewrite query DAGs to simulate alternate configurations

Fully general what-if analysis. Use cases:

- Bootstrap: centralized -> distributed
- Test alternate data replication strategies
- Simulate adding/removing data centers

Uk

Japan DC

Optimizations

3. Function-specific

2. SQL-aware

1. Runtime

Optimizations

3. Function-specific

2. SQL-aware

1. Runtime

3. Function-specific optimizations

Past work: large number of distributed algorithms targeting specific problems

Support via extensible user-defined function interface

- Allows registering multiple implementations
- Optimizer will automatically choose best, based on profiling

As examples, implemented

- Top-k [1]
- Approximate count-distinct [2]

^{[1] &}quot;Efficient top-k query computation in distributed networks" P. Cao, Z. Wang, PODC 2004

^[2] "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm" P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, AOFA 2007

EVALUATION

Implemented Hadoop-stack prototype

- Prototype multi-DC replacement for Apache Hive

Experiments up to 10s of TBs scale

- Real Microsoft production workload
- Several synthetic benchmarks:
 - ▶ TPC-CH
 - BigBench-SQL
 - Berkeley Big-Data
 - YCSB

BigBench-SQL

GB (raw, uncompressed)
Size of updates to DB since last analytics run

TPC-CH

GB (raw, uncompressed)
Size of updates to DB since last analytics run

Microsoft production workload

Size of OLTP updates since last OLAP run (raw, uncompressed)

Berkeley Big-Data

GB (raw, uncompressed)
Size of updates to DB since last analytics run

Berkeley Big-Data

GB (raw, uncompressed)
Size of updates to DB since last analytics run

BEYOND SQL

Beyond SQL: DAG workflows

Computational model: directed acyclic task graphs, each node = arbitrary computation

Significantly more challenging setting

Initial results encouraging

- Same level of improvement as SQL

More details: [CIDR 2015]

RELATED WORK

Distributed and parallel databases

Single-DC frameworks (Hadoop/Spark/...)

Data warehouses

Scientific workflow systems

Sensor networks

Stream processing systems (e.g. JetStream)

• • •

Key characteristics

- 1. Support full relational model at 100s TBs/day scale
- 2. No control over data partitioning
- 3. Focus on cross-DC bandwidth
- 4. Unique constraints
 - Heterogeneous bandwidth costs/capacities
 - Sovereignty
- 5. Assumption of ~stable recurring workload
 - Enables highly tuned optimization

SUMMARY

Centralized analytics becoming unsustainable

Geo-distributed analytics: SQL and DAG workflows

Several novel techniques

- Redundancy elimination via caching
- Pseudo-distributed measurement
- [SQL query planner + ILP] optimizer

Up to 360x less bandwidth on real & synthetic workloads

THANK YOU!

SUMMARY

Centralized analytics becoming unsustainable

Geo-distributed analytics: SQL and DAG workflows

Several novel techniques

- Redundancy elimination via caching
- Pseudo-distributed measurement
- [SQL query planner + ILP] optimizer

Up to 360x less bandwidth on real & synthetic workloads

BACKUP SLIDES

Caching and view selection

Consider SELECT val - avg(val) FROM table

Cutpoint selection problem: do we cache

- Base [val], or
- Results after average has been subtracted

Akin to view selection problem in SQL databases

Current implementation makes wrong choice

Sovereignty: Partial support

Our system respects data-at-rest regulations (e.g. German data should not leave Germany)

But we allow arbitrary queries on the data

Limitation: we don't differentiate between

- Acceptable queries, e.g. "what's the total revenue from each city"
- Problematic queries, e.g.
 SELECT * FROM Germany

Sovereignty: Partial support

Solution: either

- Legally vet the core workload of queries
- Use differential privacy mechanism

Open problem

Past work