Global analytics in the face of
bandwidth and regulatory constraints

Ashish Vulimiri¥ Carlo Curino™ Brighten Godfrey"
Thomas Jungblut™ Jitu Padhye™ George Varghese™

"UIUC "Microsoft

Massive data volumes

Bl Facebook 600 TB/day
¥ Twitter 100 TB/day
2 Microsoft 10s TB/day
@ Linkedln 10 TB/day

Yahoo! 10 TB/day

Massive data volumes

K Facebook
W Twitter
== Microsoft
[LinkedIn

mm Yahoo!

600 TB/day
100 TB/day
10s TB/day

10 TB/day

10 TB/day

Use cases:
- User activity logs
- Monitoring remote infrastructures

A%

Collected across several data
centers for low user latency

SQL analytics across geo-distributed data to extract insight

current solution: centralize
- copy all data to central data center

- run all queries there

10s-100s TB/day
up to 10s of DCs

current solution: copy all data to central DC, run all analytics there

Centralized approach i1s inadequate

1. Consumes scarce, expensive cross-DC bandwidth

current solution: copy all data to central DC, run all analytics there

Centralized approach i1s inadequate

1. Consumes scarce, expensive cross-DC bandwidth

rising costs slowing growth
Internet capacity growth (%)
) 80
external network is oL T~
fastest rising DC cost 20 |
2009 2014
scarce capacity recognized concern
total Internet some DCs’ internal several O.ther efforts t?
capacity <X bisection b/w reduce wide-area traffic

100 Tb/s 1000Th/s e.g. SWAN, B4

current solution: copy all data to central DC, run all analytics there

Centralized approach i1s inadequate

1. Consumes scarce, expensive cross-DC bandwidth

2. Incompatible with sovereignty concerns
- Many countries considering restricting moving citizens’ data
- Could render centralization impossible
- Speculation: derived information might still be acceptable

current solution: copy all data to central DC, run all analytics there

Centralized approach i1s inadequate

1. Consumes scarce, expensive cross-DC bandwidth

2. Incompatible with sovereignty concerns

Geo-distributed SQL analytics

SQL query:

DC,
— | reprocess
CliICK_log adserve_|08 apdseprve Iog
DC,

. _ preprocess
click_log click_log | click_log

Centralized execution: 10 TB/day

@ k-means
clustering

@é

Geo-distributed SQL analytics

SQL query:

adserve_log
click_lo reprocess
s adserve log Prep
: adserve_log

adserve_log

. _ preprocess
click_log click_log | click_log

@ k-means
clustering

Centralized execution: 10 TB/day Distributed execution: 0.03 TB/day
t=0 t=1 t=2
push down distributed centralized
preprocess semi-join k-means

20

Geo-distributed SQL analytics

SQL guery:

DC,
— | reprocess
ClICK_l0§8 adserve_log apdseprve log

DC,

. . preprocess
click_log click_log | click_log

Centralized execution: 10 TB/day Distributed execution: 0.03 TB/day

333x cost reduction

m k-means
clustering

Geo-distributed SQL analytics

Optimizations: synthesize and extend ideas from

- Parallel and distributed databases
- Distributed systems
... as well as novel techniques of our own

Common thread: revisit classical database problems from
networking perspective

PROBLEM DEFINITION

Requirements

Possible challenges to address
Bandwidth
Sovereignty
Fault-tolerance
Latency
Consistency

We target the batch analytics dominant in organizations today

Key characteristics

Support full relational model

No control over data partitioning
- Dictated by external factors, typically end-user latency

Cross-DC bandwidth is scarcest resource by far
- CPU, storage etc within data centers are relatively cheap

Unique constraints
- Heterogeneous bandwidth costs/capacities
- Sovereignty

Bulk of load comes from ~stable recurring workload
- Consistent with production logs

Problem statement

Given: data born distributed across DCs a certain way

Goal: support SQL analytics on this data
- Minimize bandwidth cost
- Handle fault-tolerance, sovereignty constraints

System will handle arbitrary queries at runtime

- But will be tuned to optimize known ~stable recurring workload

OUR APPROACH

Basic Architecture

Queries

&

Coordinator

Reporting Results

pipeline

Single-DC SQL stack
[Hive]

Local : ETL

End-user facing DB
(handles OLTP)

......
., .

Optimizations

Function-specific

SQL-aware

workload planning

Runtime

data transfer reduction

semantic
level

Optimizations

3. Function-specific

2. SQL-aware

1. Runtime

Optimizations

3. Function-specific

2. SOL-aware

1. Runtime data transfer optimization

In our setting
- CPU, storage, ... within data centers is cheap
- Cross-DC bandwidth is the expensive resource

Trade off CPU, storage for bandwidth reduction

1. Runtime data transfer optimization

aggressively cache all intermediate output

DCa DCs

t=0 DCg asks DCa for results of subquery g

1. Runtime data transfer optimization

aggressively cache all intermediate output

1. Runtime data transfer optimization

aggressively cache all intermediate output

t=1 DCg asks DCa for results of subquery g
again

1. Runtime data transfer optimization

aggressively cache all intermediate output

t=1 DCg asks DCa for results of subquery g
again

1. Runtime data transfer optimization

aggressively cache all intermediate output

recompute g1 from scratch

- not using caching to save latency, CPU
- only bandwidth

1. Runtime data transfer optimization

aggressively cache all intermediate output

Caching helps not only when same query arrives repeatedly
... but also when different queries have common sub-operations

e.g. 6x data transfer reduction in TPC-CH

1. Runtime data transfer optimization

aggressively cache all intermediate output

Caching helps not only when same query arrives repeatedly
... but also when different queries have common sub-operations
e.g. 6x data transfer reduction in TPC-CH

Database parallel: caching = view materialization
* Caching is a low-level, mechanical form of view maintenance
+ Works for arbitrary computations, including arbitrary UDFs
— Uses more CPU, storage

— Can miss opportunities

Optimizations

3. Function-specific

2. SOL-aware

Optimizations

3. Function-specific

1. Runtime

2. SQL-aware workload planning

Given

- Stable workload (set of queries)
- Fault-tolerance and sovereignty constraints

Jointly optimize
- Query plan
- Site selection (task scheduling)

- Data replication
» Replicate data for performance and/or fault-tolerance

to minimize data transfer cost
Challenge: optimization search space is exponentially large

Approach: simplify search space

2. SQL-aware workload planning

Simplification

. Big table U@
@ Smalltable Japan

US

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

2. SQL-aware workload planning

Simplification

. Big table U@
@ Smalltable Japan

US

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

2. SQL-aware workload planning

Simplification

. Big table U@
@ Smalltable Japan

US

Computation: copy both tables to one DC, then join them

Decision 1: do we copy the big table or the small table?

Decision 2: which copy of the small table do we use?

2. SQL-aware workload planning

Had two kinds of decisions to make:

1. Logical plan
- Do we copy the big table or the small table?

2. Physical plan

- Which copy of the small table do we use?

2. SQL-aware workload planning

Had two kinds of decisions to make:

1. Logical plan
- Do we copy the big table or the small table?
- Choice was clear, strategies were orders of magnitude apart

2. Physical plan
- Which copy of the small table do we use?
- Choice wasn’t as obvious, had to know precise costs

2. SQL-aware workload planning

Simplification: Two-phase approach

1. Logical plan

- Choose based on simple statistics on each table

2. Physical plan
- Profile logical plan, collecting precise measurements
- Use to optimize physical plan

Key insight
- “Logical” choices: simple statistics usually suffice

|”

- “Physical” choices: need more careful cost estimates
- Only an empirical insight

» But worked well in all our experimental workloads

2. SQL-aware workload planning

workload @
logical plan @ @

profiled profiled
DAG 1 DAG n

4 N
schedule tasks to DCs,

\decide data replication policy)

physical plan l

2. SQL-aware workload planning

workload @
logical plan @ @

1. Query planner

2. Profiler
profiled profiled
DAG 1 DAG n
4) :
schedule tasks to DCs, 3. Integer Linear
\decide data replication policy) Program

physical plan l

2. SQL-aware workload planning

workload @
logical plan @ @

profiled profiled
DAG 1 DAG n

1. Query planner

2. Profiler

4)

schedule tasks to DCs, 3. Integer Linear
\decide data replication policy) Program

physical plan l

2. SQL-aware workload planning

Profiling task graphs

partial
aggregate
SELECT city,
SUM(orderValue) GNg Merge

FROM sales
WHERE category = ‘Electronics’
GROUP BY city want to

measure

Distributed deployment:

2. SQL-aware workload planning

Profiling task graphs

partial
aggregate

SELECT city,

SUM(orderValue)
FROM sales
WHERE category = ‘Electronics’

GROUP BY city

want to
measure

Centralized deployment:

inject filter
WHERE country = “US”

-

(—y
-
C—-

N

2. SQL-aware workload planning

Profiling task graphs

Pseudo-distributed execution

Rewrite query DAGs to simulate alternate configurations

Fully general what-if analysis. Use cases:
- Bootstrap: centralized -> distributed
- Test alternate data replication strategies

- Simulate adding/removing data centers

2. SQL-aware workload planning

1. Query Planner

2. Profiler
profiled profiled
DAG 1 DAG n
4 p ,
schedule tasks to DCs, 3. Integer Linear
kdecide data replication policy) Program

l

Optimizations

3. Function-specific

1. Runtime

Optimizations

3. Function-specific

2. SOL-aware

1. Runtime

3. Function-specific optimizations

Past work: large number of distributed algorithms
targeting specific problems

Support via extensible user-defined function interface

- Allows registering multiple implementations
- Optimizer will automatically choose best, based on profiling

As examples, implemented
- Top-k
- Approximate count-distinct %

(11 “Efficient top-k query computation in distributed networks”
P. Cao, Z. Wang, PODC 2004

2l “HyperLoglLog: the analysis of a near-optimal cardinality estimation algorithm”
P. Flajolet, E. Fusy, O. Gandouet, F. Meunier, AOFA 2007

EVALUATION

Implemented Hadoop-stack prototype

- Prototype multi-DC replacement for Apache Hive

Experiments up to 10s of TBs scale
- Real Microsoft production workload

- Several synthetic benchmarks:
» TPC-CH
» BigBench-SQL
» Berkeley Big-Data
» YCSB

BigBench-5SQL

Centralized —l—

o i i
C -qU) 1000 Distributed: no caching ==Q=--
QL 4 100 Distributed: with caching ee=3e ~ 330x
“ o s s :
g B_ : :
b g |O B e
(3 ,o”
g O | @wsssss@pe ‘.,...,;e,----..-!... C Dot
aa . anvanonn - U S SR

0.0I | IIIIIIIi | IIIIIIIi | IIIIIIIi | IIIIIIIi | IIIIIIIi
0! | 0 100 1000 10000

GB (raw, uncompressed)
Size of updates to DB since last analytics run

Centralized —l— g §
1000 Distributed: no caching ==QG--
100 Distributed: with caching esse-3€eeee- ? 5 360x

10 B T . TSN S ool
: ; - o :

Data transfer
GB (compressed)

0.1 £ P MU I — —

OOI oo |||||||i | |||||||i | |||||||i | |||||||i | |||||||i
0.1 I 10 100 1000 10000

GB (raw, uncompressed)
Size of updates to DB since last analytics run

Microsoft production workload

Centralized ——f—
Distributed: no caching ==Q ==
istributed: with caching

..

..

...

Data transfer
(compressed)

Size of OLTP updates since last OLAP run
(raw, uncompressed)

Berkeley Big-Data

Céntralized —_— | :
Distributed: no caching ==<Q@ == i t 3.5x
|10 Distributed: with caching essssedfoeeeee .o o =

Distributed: caching + top-k =e=dige=s-

- <
- o & -
----- .

Data transfer
GB (compressed)

OOI : |||||Ili l |||||||i l |||||||i
0.1 | 0 o

GB (raw, uncompressed)
Size of updates to DB since last analytics run

Berkeley Big-Data

Centralized S |
Distributed: no caching ==« ==

|10 Distributed: with caching sesesJeeeses . 2a
Distributed: caching + top-k =e=dire==e- §

- <
- o & -
----- .

Data transfer
GB (compressed)

OOI : |||||Ili l |||||||i l |||||||i
0.1 | 0 o

GB (raw, uncompressed)
Size of updates to DB since last analytics run

27X

BEYOND SQL

Beyond SQL: DAG workflows

Computational model: directed acyclic task graphs,
each node = arbitrary computation

Significantly more challenging setting

Initial results encouraging

- Same level of improvement as SQL

More details: [CIDR 2015]

[CIDR 2015] “WANalytics: Analytics for a geo-distributed data-intensive world”
Vulimiri, Curino, Godfrey, Karanasos, Varghese

RELATED WORK

Distributed and parallel databases
Single-DC frameworks (Hadoop/Spark/...)
Data warehouses

Scientific workflow systems

Sensor networks

Stream processing systems (e.g. JetStream)

Key characteristics

. Support full relational model at 100s TBs/day scale

. No control over data partitioning

. Focus on cross-DC bandwidth

. Unique constraints

- Heterogeneous bandwidth costs/capacities
- Sovereignty

. Assumption of ~stable recurring workload
- Enables highly tuned optimization

SUMMARY

Centralized analytics becoming unsustainable
Geo-distributed analytics: SQL and DAG workflows

Several novel techniques

- Redundancy elimination via caching
- Pseudo-distributed measurement

- [SQL query planner + ILP] optimizer

Up to 360x less bandwidth on real & synthetic workloads

THANK YOU!

SUMMARY

Centralized analytics becoming unsustainable
Geo-distributed analytics: SQL and DAG workflows

Several novel techniques

- Redundancy elimination via caching
- Pseudo-distributed measurement

- [SQL query planner + ILP] optimizer

Up to 360x less bandwidth on real & synthetic workloads

BACKUP SLIDES

Caching and view selection

Consider SELECT val - avg(val) FROM table

Cutpoint selection problem: do we cache

- Base [val], or
- Results after average has been subtracted

Akin to view selection problem in SQL databases

Current implementation makes wrong choice

Sovereignty: Partial support

Our system respects data-at-rest regulations
(e.g. German data should not leave Germany)

But we allow arbitrary queries on the data

Limitation: we don’t differentiate between

- Acceptable queries, e.g.
“what’s the total revenue from each city”

- Problematic queries, e.g.
SELECT * FROM Germany

Sovereignty: Partial support

Solution: either

- Legally vet the core workload of queries
- Use differential privacy mechanism

Open problem

Past work

