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Wormhole: 

Yogi Sharma 
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Reliable Pub-Sub to support  
Geo-replicated Internet Services 

Facebook 
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Challenge: Update Stale Data 
Graph Search 
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Alice moves away from Oakland 

(Alice lives in Oakland) 
(Alice lives in Boston) 

(Alice lives in Oakland) 

Alice: Change  
my city to Boston 

MySQL 
Graph Search 

Index 
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Alice moves away from Oakland 

Me: Get my friends  
in Oakland 

Result: . . . , Alice, . . . 

(Alice lives in Oakland) 
(Alice lives in Boston) 

Alice: Change  
my city to Boston 

MySQL (Alice lives in Oakland) Graph Search 
Index 

5 



Need for updates and its challenges 

HDFS 

Memcache TAO Cache 

MySQL RocksDB 

News Feed 
Index 

Graph Search 
Index 

Applications 

Datastores 

q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 
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Each application tails updates 

Memcache TAO Cache News Feed 
Index 

Graph Search 
Index 

Tailer 

MySQL 

Apply updates 

Tailer Tailer Tailer 
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MySQL 
q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 

The publisher pushes updates 

Memcache TAO Cache News Feed 
Index 

Graph Search 
Index 

Publisher 

✓ 

Subscriber Subscriber Subscriber Subscriber 
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•  Runs on existing heterogeneous datastores 
•  Delivers updates reliably – at least once, in-order 
•  Handles varying application speeds efficiently 

Wormhole – a pub-sub system 

What it is: 

What it isn’t: 

Transporting over 5 trillion updates per day in Facebook 

•  Not exactly-once delivery 
•  Not a storage system 
•  No global ordering across different datastores 
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q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 

Support heterogeneous datastores 
✓ 
✓ 

Memcache TAO Cache News Feed 
Index 

Graph Search 
Index 

MySQL 

Publisher 

Subscriber Subscriber Subscriber Subscriber 

MySQL Tailer 

Txn Logs 

Datastore agnostic Wormhole updates 

HDFS 

HDFS Tailer 
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Reliable delivery 

Transaction Log 

Subscriber 

Applications TAO Cache 
Graph Search 

Cache Memcache 

Subscriber Subscriber 

Publisher 

… 9 

9 9 9 

8 5 6 7 

Tailer 

9 10 11 

Datastore 
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Reliable delivery 

Publisher 

Tailer 

Subscriber 

Applications TAO Cache 
Graph Search 

Cache Memcache 

Subscriber Subscriber 

… 9 8 5 6 7 10 11 

Datastore 

done?10 done?10 done?10 

ack10 

•  Store application markers 
in persistent storage 

• Recover application from 
stored markers 

Crash 

q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 

✓ 
✓ 
✓ Transaction Log 
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Applications failure and recovery 

Publisher 

Tailer 

Subscriber 

TAO Cache 
Graph Search 

Cache Memcache 

Subscriber Subscriber 

9 8 5 6 7 10 

Crash Crash 

11 12 13 14 

12 

Datastore 

Applications 

… Transaction Log 
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7 9 12 

Applications failure and recovery 

Publisher 

Tailer Recovery Tailer 

Subscriber 

Applications TAO Cache 
Graph Search 

Cache Memcache 

Subscriber Subscriber 

5 6 11 13 14 

Datastore 

8 10 

•  Tradeoff:   
one recovery tailer  
versus  
multiple recovery tailers 7 9 9 

7 9 … Transaction Log 
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Publisher 

Tailer Recovery Tailer 

7 9 12 

Finish applications recovery 

Subscriber 

Applications TAO Cache 
Graph Search 

Cache Memcache 

Subscriber Subscriber 

5 6 11 13 14 8 10 15 16 17 

Datastore 

q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 

✓ 
✓ 
✓ 
✓ 

… Transaction Log 
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Tailers: I/O efficiency 

•  Production deployment 
•  Many publishers and datastores 
•  Replication, 6 applications 
•  Metrics every 1 minute 
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5x data read during failure 
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Tailers: I/O vs. latency tradeoff 
Experiment: Send part of a 20 GB data to 10 applications 
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Application  
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Tailers: I/O vs. latency tradeoff 
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1 tailer 

10 tailers 



•  One production publisher 
•  Sample of 50k updates 
•  Measure latency between 

“write to datastore” and 
“delivery to application” 

Latency of updates processing 

99-percentile latency ~ 81ms 
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q  Tens of applications 

q  Heterogeneous datastores 

q  Varying application speeds 

q  Reliable delivery 

✓ 
✓ 
✓ 
✓ 

What’s next?  

What if datastore disk fails? 
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•  Coordination mechanism 

•  Datastore agnostic position 

•  Global application markers 

Reliable delivery despite datastore failure 

Datastore 
(Replica) 

Publisher 

Replication 
Datastore 

TAO Cache 

Subscriber 

Peer Publisher 

Disk  
failure 

Unusable 

•  Multi Copy Reliable Delivery 
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Multi copy reliable delivery 

DB in 
Region 1 

DB in  
Region 2 
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(a) Updates to Application 1 
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(b) Updates to Application 2 

Red 
datastore  
fails 

Red 
datastore  
recovers  
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•  Wormhole scalable pub-sub in production at Facebook 
•  Works with existing heterogeneous datastores 
•  Provides at-least once, in-order delivery despite failures 
•  Trades off latency and I/O using tailers 

Conclusions 
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Thank You 
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