
1

Wormhole:

Yogi Sharma

Joint work with Philippe Ajoux, Petchean Ang, David Callies, Abhishek Choudhary, Laurent Demailly, Thomas Fersch,
Liat Atsmon Guz, Andrzej Kotulski, Sachin Kulkarni, Sanjeev Kumar, Harry Li, Jun Li, Evgeniy Makeev, Kowshik Prakasam,
Robbert van Renesse (Cornell), Sabyasachi Roy, Pratyush Seth, Yee Jiun Song, Kaushik Veeraraghavan, Benjamin Wester, Peter Xie.

Reliable Pub-Sub to support
Geo-replicated Internet Services

Facebook

2

Challenge: Update Stale Data
Graph Search

3

Alice moves away from Oakland

(Alice lives in Oakland)
(Alice lives in Boston)

(Alice lives in Oakland)

Alice: Change
my city to Boston

MySQL
Graph Search

Index

4

Alice moves away from Oakland

Me: Get my friends
in Oakland

Result: . . . , Alice, . . .

(Alice lives in Oakland)
(Alice lives in Boston)

Alice: Change
my city to Boston

MySQL (Alice lives in Oakland) Graph Search
Index

5

Need for updates and its challenges

HDFS

Memcache TAO Cache

MySQL RocksDB

News Feed
Index

Graph Search
Index

Applications

Datastores

q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

6

Each application tails updates

Memcache TAO Cache News Feed
Index

Graph Search
Index

Tailer

MySQL

Apply updates

Tailer Tailer Tailer

7

MySQL
q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

The publisher pushes updates

Memcache TAO Cache News Feed
Index

Graph Search
Index

Publisher

✓

Subscriber Subscriber Subscriber Subscriber

8

•  Runs on existing heterogeneous datastores
•  Delivers updates reliably – at least once, in-order
•  Handles varying application speeds efficiently

Wormhole – a pub-sub system

What it is:

What it isn’t:

Transporting over 5 trillion updates per day in Facebook

•  Not exactly-once delivery
•  Not a storage system
•  No global ordering across different datastores

9

q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

Support heterogeneous datastores
✓
✓

Memcache TAO Cache News Feed
Index

Graph Search
Index

MySQL

Publisher

Subscriber Subscriber Subscriber Subscriber

MySQL Tailer

Txn Logs

Datastore agnostic Wormhole updates

HDFS

HDFS Tailer

10

Reliable delivery

Transaction Log

Subscriber

Applications TAO Cache
Graph Search

Cache Memcache

Subscriber Subscriber

Publisher

… 9

9 9 9

8 5 6 7

Tailer

9 10 11

Datastore

11

Reliable delivery

Publisher

Tailer

Subscriber

Applications TAO Cache
Graph Search

Cache Memcache

Subscriber Subscriber

… 9 8 5 6 7 10 11

Datastore

done?10 done?10 done?10

ack10

•  Store application markers
in persistent storage

• Recover application from
stored markers

Crash

q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

✓
✓
✓ Transaction Log

12

12

Applications failure and recovery

Publisher

Tailer

Subscriber

TAO Cache
Graph Search

Cache Memcache

Subscriber Subscriber

9 8 5 6 7 10

Crash Crash

11 12 13 14

12

Datastore

Applications

… Transaction Log

13

7 9 12

Applications failure and recovery

Publisher

Tailer Recovery Tailer

Subscriber

Applications TAO Cache
Graph Search

Cache Memcache

Subscriber Subscriber

5 6 11 13 14

Datastore

8 10

•  Tradeoff:
one recovery tailer
versus
multiple recovery tailers 7 9 9

7 9 … Transaction Log

14

Publisher

Tailer Recovery Tailer

7 9 12

Finish applications recovery

Subscriber

Applications TAO Cache
Graph Search

Cache Memcache

Subscriber Subscriber

5 6 11 13 14 8 10 15 16 17

Datastore

q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

✓
✓
✓
✓

… Transaction Log

15

Tailers: I/O efficiency

•  Production deployment
•  Many publishers and datastores
•  Replication, 6 applications
•  Metrics every 1 minute

25
20

15

10

5

0
0 6h 12h 18h 24h 30h 36h 42h 48h

time (h)

M
B

yt
es

/s
ec

 Bytes sent from publishers to six applications

5x data read during failure

25

20

15

10

5

0
0 6h 12h 18h 24h 30h 36h 42h 48h

time (h)

M
B

yt
es

/s
ec

 Bytes read from datastores by publishers

16

Tailers: I/O vs. latency tradeoff
Experiment: Send part of a 20 GB data to 10 applications

28 15 9 29 30 31 32 33 34 35 16 17 21 18 19 20 22 23 24 25 26 27
Application
markers

1
2

3

5
6

7
8

10
9

4

17

Tailers: I/O vs. latency tradeoff

15

0
0

I/O load (how many times data is read)

A
ve

ra
ge

 la
te

nc
y

(m
in

)

10

5

1

2 3 4 5
7

10

1 2 3 4 5 6

40% reduction

18

1 tailer

10 tailers

•  One production publisher
•  Sample of 50k updates
•  Measure latency between

“write to datastore” and
“delivery to application”

Latency of updates processing

99-percentile latency ~ 81ms

100

20

10

5

2

1
1 10 100 1000 10000

latency (ms)

pe
rc

en
til

e
of

 u
pd

at
es

 50

19

q  Tens of applications

q  Heterogeneous datastores

q  Varying application speeds

q  Reliable delivery

✓
✓
✓
✓

What’s next?

What if datastore disk fails?

20

•  Coordination mechanism

•  Datastore agnostic position

•  Global application markers

Reliable delivery despite datastore failure

Datastore
(Replica)

Publisher

Replication
Datastore

TAO Cache

Subscriber

Peer Publisher

Disk
failure

Unusable

•  Multi Copy Reliable Delivery

21

Multi copy reliable delivery

DB in
Region 1

DB in
Region 2

R
ep

lic
at

io
n

Application 1

Application 2

preferred

backup

only source

6
5
4
3

1
0 0 500 1000 1500

time (s)

up
da

te
s/

se
c

2

(a) Updates to Application 1

6
5
4
3

1
0 0 500 1000 1500

time (s)

up
da

te
s/

se
c

2

(b) Updates to Application 2

Red
datastore
fails

Red
datastore
recovers

22

•  Wormhole scalable pub-sub in production at Facebook
•  Works with existing heterogeneous datastores
•  Provides at-least once, in-order delivery despite failures
•  Trades off latency and I/O using tailers

Conclusions

23

Thank You

24

25

