

The Design and Implementation
of Open vSwitch

Ben Pfaff∗

Justin Pettit∗

Teemu Koponen∗

Ethan J. Jackson∗

Andy Zhou∗

Jarno Rajahalme∗

Jesse Gross∗

Alex Wang∗

Jonathan Stringer∗

Pravin Shelar∗

Keith Amidon†

Martin Casado∗

∗VMware
†Awake Networks

What is Open vSwitch?

From openvswitch.org:

“Open vSwitch is a production quality, multilayer virtual switch
licensed under the open source Apache 2.0 license. It is
designed to enable massive network automation through
programmatic extension, while still supporting standard

management interfaces and protocols (e.g. NetFlow, sFlow,
SPAN, RSPAN, CLI, LACP, 802.1ag).”

Where is Open vSwitch Used?

● Broad support:
– Linux, FreeBSD, NetBSD, Windows, ESX

– KVM, Xen, Docker, VirtualBox, Hyper-V, …

– OpenStack, CloudStack, OpenNebula, …

● Widely used:
– Most popular OpenStack networking backend

– Default network stack in XenServer

– 1,440 hits in Google Scholar

– Thousands of subscribers to OVS mailing lists

Open vSwitch Architecture

kernel moduleovs-vswitchd
Netlink

us
er

ke
rn

el

VM 1 VM nVMs

Controller

Hypervisor

...

ovsdb-server

VM 2

OVSDB

NICs

OVSDB

O
pe

nF
lo

w

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Use Case: Network Virtualization

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

...

Physical
to Logical

L2
Lookup

Logical to
Physical

...

packet
ingress

packet
egress

OpenFlow Pipeline

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Implications for Forwarding Performance

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

packet
ingress ...

packet
egress

Physical to
Logical

L2
Lookup

Logical to
Physical

...

k
0
 hash

lookups
k

1
 hash

lookups

k
24

 hash
lookups

...

100+ hash lookups per packet for tuple space search?

Non-solutions

● All of these helped:
– Multithreading

– Userspace RCU
– Batching packet processing
– Classifier optimizations
– Microoptimizations

● None of it helped enough: % versus x.

Classification is expensive on general-purpose CPUs!

OVS Cache v1: Microflow Cache
Microflow:
● Complete set of packet

headers and metadata
● Suitable for hash table
● Shaded data below:

Eth IP TCP payload

OpenFlow Tables

Microflow Cache

us
er

sp
ac

e
ke

rn
el

OpenFlow Controller (in theory)

hit

miss

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Speedup with Microflow Cache

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

...

Physical to
Logical

L2
Lookup

Logical to
Physical

...

k
0
 hash

lookups
k

1
 hash

lookups

k
24

 hash
lookups

...

From 100+ hash lookups per packet, to just 1!

Microflow cache

(1 hash lookup)

packet
egress

packet
ingress

Microflow Caching in Practice

● Tremendous speedup for most workloads
● Problematic traffic patterns:

– Port scans
● Malicious
● Accidental (!)

– Peer-to-peer rendezvous applications
– Some kinds of network testing

● All of this traffic has lots of short-lived microflows
– Fundamental caching problem: low hit rate

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Using a More Expensive Cache

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

packet
ingress ...

packet
egress

Physical to
Logical

L2
Lookup

Logical to
Physical

...

k
0
 hash

lookups
k

1
 hash

lookups
k

0
 hash

lookups

k
24

 hash
lookups

...

If k
c
 << k

0
 + k

1
 + … + k

24
: benefit!

Cache (k c
 hash lookups)

Naive Approach to Populating Cache

Combine tables 0...24 into one flow table. Easy! Usually, kc << k0 + k1 + … + k24. But:

Table 0

ip_src=a

ip_src=b

ip_src=c

ip_src=d

Table 1

ip_dst=e

ip_dst=f

ip_dst=g

ip_dst=h

Table 0+1+...+24

ip_src=a, ip_dst=e, …, eth_dst=i

ip_src=a, ip_dst=e, …, eth_dst=j

ip_src=a, ip_dst=e, …, eth_dst=k

...

ip_src=d, ip_dst=h, …, eth_dst=k

ip_src=d, ip_dst=h, …, eth_dst=m

× =

n
1
 flows n

2
 flows

up to n
1
× n

2
× ∙∙∙ × n

24
flows

× ∙∙∙ ×

Table 24

eth_dst=i

eth_dst=j

eth_dst=k

eth_dst=m

n
24

 flows

“Crossproduct Problem”

Lazy Approach to Populating Cache

Solution: Build cache of combined “megaflows” lazily as packets arrive.

Table 0

ip_src=a

ip_src=b

ip_src=c

ip_src=d

Table 1

ip_dst=e

ip_dst=f

ip_dst=g

ip_dst=h

Megaflow Cache

ip_src=a, ip_dst=f, …, eth_dst=i

ip_src=c, ip_dst=g, …, eth_dst=k

ip_src=d, ip_dst=e, …, eth_dst=m

× =× ∙∙∙ ×

Table 24

eth_dst=i

eth_dst=j

eth_dst=k

eth_dst=m

Same (or better!) table lookups as naive approach.
Traffic locality yields practical cache size.

populated dynamically
only from actually observed

packets

...

......

n
1
 flows n

2
 flows n

24
 flows

OVS Cache v2: “Megaflow” Cache

OpenFlow Tables

Megaflow Cache

us
er

sp
ac

e
ke

rn
el

hit

miss

Making Megaflows Better

● Megaflows are more effective when they match fewer fields.
– Megaflows that match TCP ports are almost like microflows!

– Described approach matches every field that appears in any flow
table

● Requirements:
– online

– fast

● Contribution: Megaflow generation improvements (Section 5).

Megaflow vs. Microflow Cache Performance

● Microflow cache:
– k0 + k1 + ∙∙∙ + k24 lookups for first packet in microflow

– 1 lookup for later packets in microflow

● Megaflow cache:
– kc lookups for (almost) every packet

● kc > 1 is normal, so megaflows perform worse in common case!

● Best of both worlds would be:
– kc lookups for first packet in microflow

– 1 lookup for later packets in microflow

OVS Cache v3: Dual Caches

OpenFlow Tables

Microflow Cache

Megaflow Cache

us
er

sp
ac

e
ke

rn
el

μ hit

miss

M hit

Parting Thoughts

● Architectural tension: expressibility vs. performance
● OpenFlow is expressive but troublesome to make fast on x86

– Performance requirements can make applications avoid OpenFlow

● Caching provides OVS with expressibility and performance
● Applications can freely evolve decoupled from performance

– Specialized code would be slower!

● Starting from a more general problem produced better results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

