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What is Open vSwitch?

From openvswitch.org:

“Open vSwitch is a production quality, multilayer virtual switch 
licensed under the open source Apache 2.0 license.  It is 
designed to enable massive network automation through 
programmatic extension, while still supporting standard 

management interfaces and protocols (e.g. NetFlow, sFlow, 
SPAN, RSPAN, CLI, LACP, 802.1ag).”



  

Where is Open vSwitch Used?

● Broad support:
– Linux, FreeBSD, NetBSD, Windows, ESX

– KVM, Xen, Docker, VirtualBox, Hyper-V, …

– OpenStack, CloudStack, OpenNebula, …

● Widely used:
– Most popular OpenStack networking backend

– Default network stack in XenServer

– 1,440 hits in Google Scholar

– Thousands of subscribers to OVS mailing lists



  

Open vSwitch Architecture

kernel moduleovs-vswitchd
Netlink

us
er

ke
rn

el

VM 1 VM nVMs

Controller

Hypervisor

...

ovsdb-server

VM 2

OVSDB

NICs

OVSDB

O
pe

nF
lo

w



  

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Use Case: Network Virtualization

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

...

Physical 
to Logical

L2 
Lookup

Logical to 
Physical

...

packet
ingress

packet
egress

OpenFlow Pipeline



  

Table 0

Flow 1

Flow 2

...

OpenFlow tables

Implications for Forwarding Performance

Table 1
Flow 1

Flow 2

...

Table 24
Flow 1

Flow 2

...

packet
ingress ...

packet
egress

Physical to 
Logical

L2 
Lookup

Logical to 
Physical

...

k
0
 hash 

lookups
k

1
 hash 

lookups

k
24

 hash 
lookups

...

100+ hash lookups per packet for tuple space search?



  

Non-solutions

● All of these helped:
– Multithreading

– Userspace RCU
– Batching packet processing
– Classifier optimizations
– Microoptimizations

● None of it helped enough: % versus x.

Classification is expensive on general-purpose CPUs!



  

OVS Cache v1: Microflow Cache
Microflow:
● Complete set of packet 

headers and metadata
● Suitable for hash table
● Shaded data below:

Eth IP TCP payload
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Microflow Caching in Practice

● Tremendous speedup for most workloads
● Problematic traffic patterns:

– Port scans
● Malicious
● Accidental (!)

– Peer-to-peer rendezvous applications
– Some kinds of network testing

● All of this traffic has lots of short-lived microflows
– Fundamental caching problem: low hit rate
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Naive Approach to Populating Cache

Combine tables 0...24 into one flow table. Easy! Usually, kc << k0 + k1 + … + k24. But:
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Lazy Approach to Populating Cache

Solution: Build cache of combined “megaflows” lazily as packets arrive.
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OVS Cache v2: “Megaflow” Cache
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Making Megaflows Better

● Megaflows are more effective when they match fewer fields.
– Megaflows that match TCP ports are almost like microflows!

– Described approach matches every field that appears in any flow 
table

● Requirements:
– online

– fast

● Contribution: Megaflow generation improvements (Section 5).



  

Megaflow vs. Microflow Cache Performance

● Microflow cache:
– k0 + k1 + ∙∙∙ + k24 lookups for first packet in microflow

– 1 lookup for later packets in microflow

● Megaflow cache:
– kc lookups for (almost) every packet

● kc > 1 is normal, so megaflows perform worse in common case!

● Best of both worlds would be:
– kc lookups for first packet in microflow

– 1 lookup for later packets in microflow



  

OVS Cache v3: Dual Caches
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Parting Thoughts

● Architectural tension: expressibility vs. performance
● OpenFlow is expressive but troublesome to make fast on x86

– Performance requirements can make applications avoid OpenFlow

● Caching provides OVS with expressibility and performance
● Applications can freely evolve decoupled from performance

– Specialized code would be slower!

● Starting from a more general problem produced better results
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