
JITSU: JUST-IN-TIME
SUMMONING OF UNIKERNELS

Anil Madhavapeddy University of Cambridge @avsm

Magnus Skjegstad University of Cambridge @MagnusSkjegstad

on behalf of: Thomas Gazagnaire, David Scott, Richard Mortier, Thomas Leonard,
David Sheets, Amir Chaudhry, Jon Ludlam, Balraj Singh, Jon Crowcroft, Ian Leslie

http://openmirage.org/
http://decks.openmirage.org/nsdi2015/

Press <esc> to view the slide index, and the <arrow> keys to navigate.

http://openmirage.org/
http://decks.openmirage.org/nsdi2015/
http://twitter.com/MagnusSkjegstad
http://openmirage.org/
http://twitter.com/avsm

THE IOT SPRING

FASTER THAN LIGHT?
Many network services suffer as latency increases, e.g.,

Siri
Google
Glass

...to say nothing of how they operate when disconnected.

So let's move the computation closer to the data
and reduce dependency on a remote cloud

THE PAST YEAR
Heartbleed: 17% of all Internet secure web servers vulnerable
to a single bug. Described as "catastrophic" by Bruce Schneier.
ShellShock: CGI, Web, DHCP all vulnerable to code execution.
Millions of sites potentially vulnerable.
JP Morgan: 76 million homes and 8 million small businesses
exposed in a single data breach.
Target: 40 million credit cards stolen electronically.

System security is in a disastrous state, and
seemingly getting worse with IoT.

STRONGER THAN STEEL?
We earlier noted the many recent network security problems:

Heartbleed
Shellshock

...and such bugs will reoccur, now in our homes, cars, fridges

So let's build fundamentally more robust edge
network services

THE CHALLENGES
VMs are the strongest practical isolation on physical
devices

But resource heavy on embedded devices
Long boot times and management overheads

Containers are really easy to use
But isolation is poor due to wide interfaces
Often requires disk I/O to boot

Can we eliminate tradeoff between latency and
isolation at the edge?

MEANWHILE, IN YOUR CAR...

-- via embedded-computing.com @whitequark

http://embedded-computing.com/articles/virtualizations-impact-mobile-devices-the-iot/#
https://twitter.com/whitequark/status/595918241224097792

THE UNIKERNEL APPROACH
Unikernels are specialised virtual machine

images compiled from the full stack of
application code, system libraries and config

This means they realise several benefits:

Contained, simplifying deployment and
management.
Compact, reducing attack surface and boot times.
Efficient, able to better use host resources.

REAL TIME BOOT
Unikernels can boot and respond to network traffic in real-time.

See Also: HotCloud 2011, ASPLOS 2013, Communications of the ACM Jan 2014

CONTRIBUTIONS
Built platform support required for ARM cloud deployments:

Ported unikernels to the new Xen/ARMv7 architecture

Runs VMs on commodity ARM hardware (Cubieboard)
Type-safe, native code down to the device drivers

Constructed Jitsu toolstack to launch unikernels on-
demand

Race-free booting of unikernels in response to DNS
Evaluated against alternative service isolation techniques

E.g. Docker containers

ARTIFACT: MIRAGE OS 2.0
These slides were written using MirageOS on Mac OS X:

They are hosted in a 2MB Xen unikernel written in statically
type-safe OCaml, including device drivers and network stack.

Their application logic is just a couple of source files, written
independently of any OS dependencies.

Running on an ARM CubieBoard2, and hosted on the cloud.

Binaries small enough to track the entire deployment in Git!

http://openmirage.org/

ARTIFACT: MIRAGE OS 2.0

http://openmirage.org/

JUST-IN-TIME SUMMONING
A toolstack to launch unikernels on-demand with low latency:

Performance improvements to Xen's boot process &
toolstack

Are VMs fundamentally too slow for real-time launch?
Currently: 3-4s to boot a Linux VM on ARM

Conduit, shared-memory communication between unikernels
Low-latency toolstack communications
Currently: loopback TCP over bridge

Synjitsu and the Jitsu Directory Service
Launch services on-demand in real time

JITSU ARCHITECTURE

XEN/ARM TOOLSTACK
Required a new "MiniOS" for Xen/ARMv7 architecture.

Removal of libc reduces attack surface and image
size
Vast majority of networking code in pure OCaml

Xen PV driver model only – no hardware emulation
ARM does not need all the legacy support of Xen/x86!

Much less CPU available, so need to optimise toolstack
Linux VM takes 3-4s to boot on Cubieboard

PARALLEL BOOT

Improving inter-VM XenStore coordination database had scaling
problems with concurrency conflicts, resolved via custom merge
functions.

DESERIALISATION

Methodical elimination of forking crimes such as dom0 shell scripts

CONDUIT
Establishes zero-copy shared-memory pages between peers

Xen grant tables map pages between VMs (/dev/gntmap),
synchronised via event channels (/dev/evtchn)

Provides a rendezvous facility for VMs to discover named peers
Also supports unikernel and legacy VM rendezvous

Hooks into higher-level name services like DNS

Compatible with the vchan inter-VM communication protocol

Code: https://github.com/mirage/ocaml-conduit

https://github.com/mirage/ocaml-conduit

RENDEZVOUS
XenStore acts as an incoming
connection queue
Client requests are registered in a
new /conduit subtree
Client picks port and writes to the
target listen queue
Connection metadata (grant table,
event channel refs) is written into
/local/domain/domid/vchan

...and the data flows

JITSU DIRECTORY SERVICE
Performs the role of Unix's inetd:

Jitsu VM launches at boot time to handle name resolution
(whether local via a well known jitsud Conduit node in
XenStore or remote via DNS)

When a request arrives for a live unikernel, Jitsu returns the
appropriate endpoint

If the unikernel is not live, Jitsu boots it, and acts as proxy until
the unikernel is ready

MASKING BOOT LATENCY

The Jitsu toolstack listens for DNS requests and boots the relevant
unikernel and responds immediately.

MASKING BOOT LATENCY

But a fast client might still lose a TCP SYN if unikernel isnt ready,
thus causing SYN retransmits (slow!).

MASKING BOOT LATENCY

Synjitsu responds to requests and serialises connection state until VM
is ready and network plugged in.

MASKING BOOT LATENCY

By buffering TCP requests into XenStore and then replaying, Synjitsu
parallelises connection setup and unikernel boot

MASKING BOOT LATENCY
Jitsu optimisations bring boot
latency down to ~30—45 ms
(x86) and ~350—400 ms (ARM).

Docker time was 1.1s (Linux),
1.2s (Xen) from an SD card
Mounting Docker's volumes
on an ext4 loopback volume
inside of a tmpfs reduced
latency but often terminated
early due to many buffer IO, e
xt4 and VFS errors

DEMO
Walkthrough of the key functionality with and without Synjitsu:
https://www.dropbox.com/s/ra5qib321d53nfi/nsdi_screencast.mov

https://www.dropbox.com/s/ra5qib321d53nfi/nsdi_screencast.mov

SUMMARY
Xen/ARM is here! Good way to run embedded experiments.

GitHub build scripts:
GitHub libraries: protocol code at
Robust existing Xen tools all continue to work.
Jitsu optimises away a lot of latency at the edge.

No fundamental drawback to VMs vs containers
Unikernels competitive with containers on embedded
Shipping out specialised type-safe code is practical
Not touching disk while booting further improves
latency

mirage/xen-arm-builder
openmirage.org

https://github.com/mirage/xen-arm-builder
http://openmirage.org/

ONGOING WORK
Multiprotocol Synjitsu

Extend to the TLS handshake to pipeline secure connections
Add vanilla TCP load balancing support

Wide area redirection
DNS proxy to redirect to cloud if ARM node is down
First ARM cloud hosting via

More platforms
Integrating to boot without Xen
Working with partners to provide home router platform
for future deployments

Scaleway

rump kernels
UCN

http://usercentricnetworking.eu/
http://rumpkernel.org/
http://scaleway.com/

HTTP://OPENMIRAGE.ORG/
A Linux Foundation Incubator Project lead from the University of
Cambridge and Citrix Systems.

Featuring blog posts on new features by:

, , ,
, , , ,

, and .

Amir Chaudhry Thomas Gazagnaire David Kaloper
Thomas Leonard Jon Ludlam Hannes Mehnert Mindy Preston
Dave Scott Jeremy Yallop

Thanks for listening! Questions?
Contributions very welcome at

Mailing list at
openmirage.org

mirageos-devel@lists.xenproject.org

https://github.com/yomimono
https://github.com/pqwy
mailto:mirageos-devel@lists.xenproject.org
http://gazagnaire.org/
https://github.com/yallop
http://roscidus.com/blog/
http://dave.recoil.org/
http://twitter.com/jonludlam
http://amirchaudhry.com/
http://openmirage.org/
https://github.com/hannesm
http://openmirage.org/

