Tardigrade:
Leveraging Lightweight Virtual Machines to Easily
and Efficiently Construct Fault-Tolerant Services

Jacob R. Lorch Andrew Baumann

Dutch T. Meyer Andrew Warfield

4 N

Our goal:
Turn existing binaries into fault-
tolerant services.

_

Jay Lorch, Microsoft Research Tardigrade

Example: FDS Metadata Service

FDS Metadata

server

FDS Cluster

[Nightingale et al., OSDI 2012]

Jay Lorch, Microsoft Research Tardigrade

Example: FDS Metadata Service

| - | FDS Metadata

LR

!) a 4 e

Paxos leader election

FDS Cluster

[Nightingale et al., OSDI 2012]

Jay Lorch, Microsoft Research Tardigrade

Techniques for
making code replication library
fault-tolerant

- —

Better:
Transparently make the binary
fault-tolerant

Use state machine

hav

o

Potential for oversight
* Non-determinism

* Failing to persist state
e Exposing non-persisted data
e Bugs in crash recovery

Jay Lorch, Microsoft Research Tardigrade

Outline

Motivation

Background: Asynchronous VM replication
Our solution: Lightweight VM replication
Challenges and solutions

Evaluation

Outline

* Motivation

* Background: Asynchronous VM replication
* QOur solution: Lightweight VM replication

* Challenges and solutions

* Evaluation

Jay Lorch, Microsoft Research Tardigrade

Asynchronous virtual machine
replication - Remus

[Cully et al., NSDI 2008]

r
4 . .)
Primary can crash at any time;
. backup is always a bit behind. |

Jay Lorch, Microso ft Researc h Tardigrade 8

Asynchronous virtual machine
replication - Remus

Output buffer

Jay Lorch, Microsoft Researc

Tardigrade

[Cully et al., NSDI 2008]

Asynchronous virtual machine
replication - Remus

Tardigrade

[Cully et al., NSDI 2008]

10

High VM activity can delay packets

M Baseline M Safety Scan M Search Indexer m Update M Deduplication
10000 7741

4942

9697

2460

1716

1000

96 102

76

100 66 67 77 819

43

71

Latency of ping (ms)

(" .
Processes unrelated to the service
_can balloon client-perceived latency.

1 ENENE EEEEN NEEEE EEREE

50th quantile 95th quantile 99th quantile 99.9th quantile

Jay Lorch, Microsoft Research Tardigrade

Outline

* Motivation

* Background: Asynchronous VM replication
* Our solution: Lightweight VM replication

* Challenges and solutions

* Evaluation

Jay Lorch, Microsoft Research Tardigrade 12

Our solution: Use lightweight VMs
instead

/ Lightweight VM system examples \
Xax [Douceur et al., OSDI 2008]
Native Client [Sehr et al., IEEE S&P 2009]
Drawbridge [Porter et al., ASPLOS 2011]
Embassies [Howell et al., NSDI 2013]

_ Bascule [Baumann et al., Eurosys 2013]] Narrow API
(e.g., ~45 calls

in Bascule)

Other processes Service process

Host OS

Jay Lorch, Microsoft Research Tardigrade 13

Lightweight VMs can support
unmodified binaries via a library OS

Service process

-------------------- LVM AP| +==m===mmmmmmmmmmm e

LVM host

Jay Lorch, Microsoft Research Tardigrade 14

Lightweight VMs can support
unmodified binaries via a library OS

rvi r SS)
Service proce Bascule has a

Service binary Windows LibOS
and a Linux
- LibOS y
Library OS

-------------------- LVM AP| +==m===mmmmmmmmmmm e

LVM host

Jay Lorch, Microsoft Research Tardigrade 15

A lightweight VM is encapsulated by
virtue of having a narrow interface

Service process

Service binary

Library OS

LVM AP| +======m=m—m————————

LVM host

Jay Lorch, Microsoft Research Tardigrade 16

Our approach: Checkpoint by
Interposing on existing LVM API

Service process

[Interposition\

using existing
APl means

LVM and LibOS
don’t have to

\ change /

Checkpoint

Service binary

Library OS

Checkpointer

LVM host

Jay Lorch, Microsoft Research Tardigrade 17

[Cully et al., NSDI 2008]

/Asynch ronous a /I_ightweight B
Virtual Virtual

Machine Machine
@eplication Y @eplication y
e Service Service
Library OS
Checkpointing
[primary \ back T' i
ackup primary backup
Jay Lorch, Microsoft Research Tardigrade

[Cully et al., NSDI 2008]

/AsynCh r implem(e):tration of\/l-lghtWEIght \

Virtual | "MRicaled 4 y\/irtual

Tardigrade

Machine Machine
Replication Replication
JeP <P V

% Checkpointing Checkpointing
~ - -, b
\pyarv backup (primary

Jay Lorch, Microsoft Research Tardigrade 19

Outline

Motivation

Background: Asynchronous VM replication
Our solution: Lightweight VM replication
Challenges and solutions

Evaluation

Practical LVMR poses challenges

Challenges Solutions

See paper for details

Maintaining consistency
across reconfigurations

Achieving performance
potential

Lessons for LVM
API designers

Checkpointing via an
existing LVM API

Jay Lorch, Microsoft Research Tardigrade 21

Checkpointing uses certain LVM AP
features

Feature Purpose

Ability to track changed

memory pages

Ability to suspend and
inspect other threads

Determinism when API calls
are replayed

Host state either replayable
or regeneratable

Jay Lorch, Microsoft Research Tardigrade

Features may not always be in LVM
APls

Feature Workaround

Ability to track changed
memory pages

Missing ability to suspend
and inspect other threads

Non-determinism when API
calls are replayed

Host state not replayable or
regeneratable

Jay Lorch, Microsoft Research Tardigrade

N

3

To capture a checkpoint, we must
qguiesce and capture all threads’ state.

Guest (service + library OS)

TEEE

Checkpointing layer

What if the APl doesn’t let a thread
suspend and inspect another thread?

S
(| -

primary

~—__

Jay Lorch, Microsoft Research Tardigrade 24

We can use exceptions to quiesce
guest threads

Guest (service + library OS)

Checkpointins layer

2

&

primary

~—__

Jay Lorch, Microsoft Research Tardigrade

Exception handler quiesces and
captures each guest thread’s state

Guest (service + library OS)

555 55

Checkpoint

22222

1eckpointing layer

ExceptionHandler(,g)

g

primary

~—__

Jay Lorch, Microsoft Research Tardigrade 26

Synchronous system calls complicate
guiescence

Guest (service + library OS)

Checkpointigaye

&

Jay Lorch, Microsoft Research Tardigrade

primary

~—__

27

The wait system call is easy to deal

g

primary

~—__

Jay Lorch, Microsoft Research

with

Guest (service + library OS)

Checkpointigaye

Tardigrade

select() file
descriptor list
Ox1AC

Ox3BB

0x907

time-to-checkpoint

28

General synchronous system calls
require pre-checkpointing

Guest (service + library OS)

g

primary

~—__

Jay Lorch, Microsoft Research Tardigrade

29

APl non-determinism undermines
replay

CreateSemaphore() CreateSemaphore()
returns descriptor returns descriptor
(0)7AVAVA OxBBB

(\
§

primary backup

~—__" ~—__"

Jay Lorch, Microsoft Research Tardigrade

An indirection table can hide non-
determinism

Guest (service + library OS)

Checkpointing layer

| Guest descriptor | Host descriptor I

0x002 0x932

_— Host
a4

primary

~—__"

Jay Lorch, Microsoft Research

&

Guest (service + library OS)

Checkpointing layer

Guest descriptor | Host descriptor

0x002 0x909

backup

~—__"

Tardigrade

31

State external to guest needs to be
replayable or regeneratable

Guest (service + library OS)

Checkpointer can’t capture
Host TCP session state!

TCP session state

primary

~—__"

Jay Lorch, Microsoft Research Tardigrade 32

System-specific modifications may be
necessary

Guest (service + library OS) Guest (service + library OS)

TCP connections get
dropped on a failover.

Checkpointing layer

TCP session state

primary

~—__"

Jay Lorch, Microsoft Research Tardigrade 33

Outline

Motivation

Background: Asynchronous VM replication
Our solution: Lightweight VM replication
Challenges and solutions

Evaluation

Effect of external processes - Remus

M Baseline M Safety Scan M Search Indexer m Update M Deduplication

9697

10000 7741
4942
2460
1716
1000 722
276
160 151
96 102 104
100 e e 77819 71 76 88
43
:1() “\ |||

50th quantile 95th quantile 99th quantile 99.9th quantile

Latency of ping (ms)

[HEY

Jay Lorch, Microsoft Research Tardigrade 35

Effect of external processes -
Tardigrade

M Baseline M Safety Scan M Search Indexer B Update M Deduplication

10000

1000
E

S 100
c
(]
T

1

50% 95% 99% 99.9%
Quantile

Jay Lorch, Microsoft Research Tardigrade 36

Effect of external processes -
Tardigrade

I Baseline M Safety Scan M Search Indexer B Update M Deduplication
50% 95% 99% 99.9%
Quantile

Jay Lorch, Microsoft Research Tardigrade

37

Memory dirtying affects checkpoint

latency

—No dirtying —10% of net b/w—20% of net b/w
—30% of net b/w—40% of net b/w—50% of net b/w
100

CDF (%)
(O]
o

0 20 40 60 80 100 120
Latency (ms)

Jay Lorch, Microsoft Research Tardigrade

140

38

FDS metadata service

—Metadata server initially idle —Cluster starting up

—Cluster operating normally

Checkpoint S
20 d(—__\lta average
size: 0.9 MB
< 60
w
S 40
20
0
0 10 20 30 40 50 60

Checkpoint interval (ms)

Jay Lorch, Microsoft Research Tardigrade

70

39

/KLite, a simple non-fault-tolerant Java
implementation of the Zookeeper API

100
90
80
70
60
50
40
30
20
10

0
0 20 40 60 80 100 120 140 160
Client request latency (ms)

CDF (%)

Jay Lorch, Microsoft Research Tardigrade 40

Jay Lorch, Microsoft Researc

Conclusions

Lightweight VM replication is
practical for making existing
service binaries fault-tolerant

h Tardigrade

41

