
Tardigrade:
Leveraging Lightweight Virtual Machines to Easily
and Efficiently Construct Fault-Tolerant Services

Lisa Glendenning Dutch T. Meyer Andrew Warfield

Andrew BaumannJacob R. Lorch

Jay Lorch, Microsoft Research Tardigrade 2

Our goal:
Turn existing binaries into fault-

tolerant services.

Jay Lorch, Microsoft Research Tardigrade 3

FDS Cluster

FDS Metadata
server

Example: FDS Metadata Service

[Nightingale et al., OSDI 2012]

Jay Lorch, Microsoft Research Tardigrade 4

FDS Cluster

FDS Metadata
server

Example: FDS Metadata Service

Paxos leader election

[Nightingale et al., OSDI 2012]

Jay Lorch, Microsoft Research Tardigrade 5

Use state machine
replication library

Explicitly persist state to
reliable back-end

Requires development
resources

Potential for oversight
• Non-determinism
• Failing to persist state
• Exposing non-persisted data
• Bugs in crash recovery

Techniques for
making code
fault-tolerant

have limitations

Better:
Transparently make the binary

fault-tolerant

Outline

• Motivation

• Background: Asynchronous VM replication

• Our solution: Lightweight VM replication

• Challenges and solutions

• Evaluation

Jay Lorch, Microsoft Research Tardigrade 6

Outline

• Motivation

• Background: Asynchronous VM replication

• Our solution: Lightweight VM replication

• Challenges and solutions

• Evaluation

Jay Lorch, Microsoft Research Tardigrade 7

Asynchronous virtual machine
replication - Remus

Jay Lorch, Microsoft Research Tardigrade 8

ΔΔΔΔΔ

primary backup

Primary can crash at any time;
backup is always a bit behind.

[Cully et al., NSDI 2008]

Output buffer

Asynchronous virtual machine
replication - Remus

Jay Lorch, Microsoft Research Tardigrade 9

primary backup

[Cully et al., NSDI 2008]

Asynchronous virtual machine
replication - Remus

Jay Lorch, Microsoft Research Tardigrade 10

Output buffer

Ack(Δ)

primary backup

[Cully et al., NSDI 2008]

High VM activity can delay packets

Jay Lorch, Microsoft Research Tardigrade 11

43

71 76
88

66

96 104

151

67

102

160

276

77

722

1716

2460

81.9

4942

7741
9697

1

10

100

1000

10000

50th quantile 95th quantile 99th quantile 99.9th quantile

La
te

n
cy

 o
f

p
in

g
(m

s)

Baseline Safety Scan Search Indexer Update Deduplication

Processes unrelated to the service
can balloon client-perceived latency.

Outline

• Motivation

• Background: Asynchronous VM replication

• Our solution: Lightweight VM replication

• Challenges and solutions

• Evaluation

Jay Lorch, Microsoft Research Tardigrade 12

Lightweight VM system examples
Xax [Douceur et al., OSDI 2008]

Native Client [Sehr et al., IEEE S&P 2009]
Drawbridge [Porter et al., ASPLOS 2011]

Embassies [Howell et al., NSDI 2013]
Bascule [Baumann et al., Eurosys 2013]

Our solution: Use lightweight VMs
instead

Jay Lorch, Microsoft Research Tardigrade 13

Service processOther processes LVM host

Host OS

Narrow API
(e.g., ~45 calls

in Bascule)

Lightweight VMs can support
unmodified binaries via a library OS

Jay Lorch, Microsoft Research Tardigrade 14

Service process

LVM host

LVM API

Service process

Lightweight VMs can support
unmodified binaries via a library OS

Jay Lorch, Microsoft Research Tardigrade 15

Service binary

LVM API

OS API

Library OS

LVM host

Bascule has a
Windows LibOS

and a Linux
LibOS

A lightweight VM is encapsulated by
virtue of having a narrow interface

Jay Lorch, Microsoft Research Tardigrade 16

LVM host

LVM API

Service process

Service binary

OS API

Library OS

Service process

Our approach: Checkpoint by
interposing on existing LVM API

Jay Lorch, Microsoft Research Tardigrade 17

Service binary

LVM API

OS API

Library OS

Checkpointer

LVM API

LVM host

Checkpoint Interposition
using existing

API means
LVM and LibOS
don’t have to

change

Jay Lorch, Microsoft Research Tardigrade 18

Lightweight
Virtual
Machine
Replication

Lightweight
Virtual
Machine
Replication

Asynchronous
Virtual
Machine
Replication

Asynchronous
Virtual
Machine
Replication

primary backup primary backup

Service

Library OS

Checkpointing

Host

Service

Library OS

Checkpointing

Host

[Cully et al., NSDI 2008]

[Cully et al., NSDI 2008]

Jay Lorch, Microsoft Research Tardigrade 19

Lightweight
Virtual
Machine
Replication

Lightweight
Virtual
Machine
Replication

Asynchronous
Virtual
Machine
Replication

Asynchronous
Virtual
Machine
Replication

primary backup primary backup

Guest
(service+OS)

Checkpointing

Host

Checkpointing

Host

Guest
(service+OS)

Our
implementation of

LVMR is called
Tardigrade

Outline

• Motivation

• Background: Asynchronous VM replication

• Our solution: Lightweight VM replication

• Challenges and solutions

• Evaluation

Jay Lorch, Microsoft Research Tardigrade 20

See paper for details

Jay Lorch, Microsoft Research Tardigrade 21

Maintaining consistency
across reconfigurations

Achieving performance
potential

Checkpointing via an
existing LVM API

Vertical Paxos

Incremental checkpointing,
checkpoint capping, parallelism,

scaling send buffer size

Quiescing, pre-checkpointing,
enforcing determinism,

terminating connections

Challenges Solutions

Practical LVMR poses challenges

Lessons for LVM
API designers

Jay Lorch, Microsoft Research Tardigrade 22

Checkpointing uses certain LVM API
features

Ability to track changed
memory pages

Determinism when API calls
are replayed

Host state either replayable
or regeneratable

Efficiently compute
checkpoint deltas

Capture consistent snapshot

Prevent divergence on
failover

Feature Purpose

Ability to suspend and
inspect other threads

Recreate host state on
backup

Host state either replayable
or regeneratable

Ability to suspend and
inspect other threads

Missing ability to suspend
and inspect other threads

Determinism when API calls
are replayed

Jay Lorch, Microsoft Research Tardigrade 23

Features may not always be in LVM
APIs

Non-determinism when API
calls are replayed

Host state not replayable or
regeneratable

Use exceptions, pre-
checkpointing

Hide non-determinism

Feature Workaround

Expose divergence as error
condition

Ability to track changed
memory pages

Checkpointing layer

Host

Guest (service + library OS)

To capture a checkpoint, we must
quiesce and capture all threads’ state.

Jay Lorch, Microsoft Research Tardigrade 24

primary

Memory

What if the API doesn’t let a thread
suspend and inspect another thread?

Checkpointing layer

Host

Guest (service + library OS)

We can use exceptions to quiesce
guest threads

Jay Lorch, Microsoft Research Tardigrade 25

primary

Checkpoint

Checkpoint

Checkpointing layer

Host

Guest (service + library OS)

Exception handler quiesces and
captures each guest thread’s state

Jay Lorch, Microsoft Research Tardigrade 26

primary

ExceptionHandler(,) Memory

Checkpointing layer

Host

Guest (service + library OS)

Synchronous system calls complicate
quiescence

Jay Lorch, Microsoft Research Tardigrade 27

primary

Checkpointing layerCheckpointing layer

Host

Guest (service + library OS)

The wait system call is easy to deal
with

Jay Lorch, Microsoft Research Tardigrade 28

primary

select() file
descriptor list

0x1AC

0x3BB

0x907

select() file
descriptor list

0x1AC

0x3BB

0x907

time-to-checkpoint

Checkpointing layerCheckpointing layerCheckpointing layer

Host

Guest (service + library OS)

General synchronous system calls
require pre-checkpointing

Jay Lorch, Microsoft Research Tardigrade 29

primary

API non-determinism undermines
replay

Jay Lorch, Microsoft Research Tardigrade 30

primary backup

CreateSemaphore()
returns descriptor
0xAAA

CreateSemaphore()
returns descriptor
0xBBB

An indirection table can hide non-
determinism

Jay Lorch, Microsoft Research Tardigrade 31

primary backup

Checkpointing layer

Host

Guest (service + library OS)

Checkpointing layer

Host

Guest (service + library OS)

Guest descriptor Host descriptor

0x001 0xAAA

0x002 0x932

Guest descriptor Host descriptor

0x001 0xBBB

0x002 0x909

State external to guest needs to be
replayable or regeneratable

Jay Lorch, Microsoft Research Tardigrade 32

primary backup

Checkpointing layer

Host

Guest (service + library OS)

LVM API

LVM API

API provides sockets, not
packets

TCP session state

Checkpointer can’t capture
TCP session state!

System-specific modifications may be
necessary

Jay Lorch, Microsoft Research Tardigrade 33

primary backup

Checkpointing layer

Host

Guest (service + library OS)

TCP session state

Checkpointing layer

Host

Guest (service + library OS)

TCP connections get
dropped on a failover.

Fixing this requires a major API change to make it use
packets rather than sockets

Outline

• Motivation

• Background: Asynchronous VM replication

• Our solution: Lightweight VM replication

• Challenges and solutions

• Evaluation

Jay Lorch, Microsoft Research Tardigrade 34

Effect of external processes - Remus

Jay Lorch, Microsoft Research Tardigrade 35

43

71 76
88

66

96 104

151

67

102

160

276

77

722

1716

2460

81.9

4942

7741
9697

1

10

100

1000

10000

50th quantile 95th quantile 99th quantile 99.9th quantile

La
te

n
cy

 o
f

p
in

g
(m

s)

Baseline Safety Scan Search Indexer Update Deduplication

Effect of external processes -
Tardigrade

Jay Lorch, Microsoft Research Tardigrade 36

1

10

100

1000

10000

50% 95% 99% 99.9%

La
te

n
cy

 (
m

s)

Quantile

Baseline Safety Scan Search Indexer Update Deduplication

Effect of external processes -
Tardigrade

Jay Lorch, Microsoft Research Tardigrade 37

0

5

10

15

20

25

50% 95% 99% 99.9%

La
te

n
cy

 (
m

s)

Quantile

Baseline Safety Scan Search Indexer Update Deduplication

Memory dirtying affects checkpoint
latency

Jay Lorch, Microsoft Research Tardigrade 38

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

C
D

F
(%

)

Latency (ms)

No dirtying 10% of net b/w 20% of net b/w

30% of net b/w 40% of net b/w 50% of net b/w

FDS metadata service

Jay Lorch, Microsoft Research Tardigrade 39

0

20

40

60

80

100

0 10 20 30 40 50 60 70

C
D

F
(%

)

Checkpoint interval (ms)

Metadata server initially idle Cluster starting up

Cluster operating normally

Checkpoint
delta average
size: 0.9 MB

Checkpoint
delta average
size: 1.8 MB

ZKLite, a simple non-fault-tolerant Java
implementation of the Zookeeper API

Jay Lorch, Microsoft Research Tardigrade 40

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

C
D

F
(%

)

Client request latency (ms)

Conclusions

Jay Lorch, Microsoft Research Tardigrade 41

No changes to binaries needed, making deployment
simple

Replicating processes rather than VMs substantially
reduces worst-case latency

Reasonable performance if memory dirtying rate and
load are low

Lightweight virtual machine API designers should
consider effect on replication

Examples of good targets:
Metadata services

Coordination services
Niche web services

Lightweight VM replication is
practical for making existing
service binaries fault-tolerant

