B" Microsoft

Microsoft Research

Microsoft

Research |

Checking Beliefs in
Dynamic Networks

Nuno Lopes, Nikolaj Bjarner, Patrice
Godefroid, Karthick Jayaraman, George
Varghese

2" Microsoft

Networks

« Business critical and complex

L Expensive

bugs
 Fast protocol deployment in datacenters

L Frequent protocol
changes

* A lot of legacy to maintain

L Operators don't

have the full picture

Network Verification to the

ReSEHSugs

- [dentify misbeliefs

* Increase confidence

This Paper in Context
 Implementation bugs (PIC)

 E.g., protocol conformance

« Routing configuration errors (Batfish)
« E.g., router filter error

- Dataplane configuration errors (NoD)

- E.g., customer VMs can access controller

Existing Work versus Ours

Hassel, Veriflow

Network Margrave

Optimized

Datalog

NetPlumber (NoD) Model checkers,

SAT Solvers,
Datalog

Speed Expressivity

Why Expressiveness Matters

 Network level

- Enables modeling dynamic network behaviors such as new
packet headers, new forwarding behaviors, failures, e.g.,
- A P4 router adds a new header or a new forwarding behavior

- Specification level

- Enables higher-level verification queries, e.g.
« Customer VMs cannot reach fabric controller
« All backup routers are equivalent

Example Beliefs

Customer VMs cannot access
controllers

Protection Sets

Reachable Sets Customer VMs can access other VMs

ECMP/Backup routes should have

LR Ee) identical reachability

Forward path connections through

Middlebox middlebox should reverse

Packets between two hosts in the
Locality same cluster should stay within the
cluster

Network-Optimized Datalog
(HQ{Q()Q for the specification of:

« Data-plane/control-plane
« Verification properties

« Tool for efficient verification
« Available in open-source SMT solver Z3

Why Datalog?

« Good expressiveness/efficiency tradeoff

« Supports packet rewriting, load
balancing

 Provides all (symbolic) solutions for

“free”
- Unlike SAT solvers or model checkers

Modeling Networks using

Q%@ul%tching rule in the FIB and each
ACL rule becomes a Datalog rule

« State is set of packets at each router

- Packets start at sources; Datalog runs
to fixed-point -> packets at destinations

Networks as Datalog Programs

Dataplane

R1(dst,src)

R3I—™> C

A(dst,src)

in dst src rewrite out
R1 10x Ol R2
Rl 1xx %% R3
R2 10x %% B
R3 %%% Ilxx C
R3 1%%x *xx dst[l]:=0 R2
Guards
Gip = dst=10%A src =01%
G —Gip N dst=1%xx%
G = dst=10x%
Gic src = 1 %%
Gy —G3c N dst=1%xx%
Id = src’ =src A dst = dst
Set) = src’ =src A dst' = dst[2] 0 dst]0]

Example of Reachability

A—»RI1

> R2—»B

\/.

Compute all packets sent by A that reach B

R1(dst,src
R2(dst src’

)
)
)
dst’ ,src’)
)
)

A(dst,src)

A(dst,src)

R1(dst,src) NGy N1d
3(dst,src) A Gsp A\ SetO
1(dst,src) NGz N 1d

R2(dst,src) N Gap N1d
3(dst,src) NGsec N1d

B(dst,src)

X X

=

in dst src rewrite out
R1 10x Ol R2
Rl 1% %% R3
R2 10x %% B
R3 %%% Ilxx C
R3 1%%x *xx dst[l]:=0 R2

Result:

10x01 % U

(10% %% \ (10%01 % U **x1%xx%))

= 104%x0 %%

So what's wrong with Datalog?

- Out-of-the-box implementations are

slow
- They work with a packet a time

« Our contributions:

« Symbolic representation (dealing with sets of packets)
- Efficient propagation of packets across routers

Symbolic Representation

« Packets represented as Difference of
Cubes [NSDI'12]

- Generalized to support negation, useful
e.g. to check consistency across backup

routers
(o)
[J
vii Xy ernary bit-vectors

Examples: 10x01x U (10xxxx \ (10x01 % U **x 1 xx))
10% 0 %%

Fuse Internal Datalog Operators

Packets with
Source starting ?
with 1 Drop HTTP Packets

Evaluation questions

« Do beliefs help?

- How hard is it to add a new forwarding
protocol?

« How does NoD performs compared with
existing verification tools?

* |s this useful in practice?

Beyond Reachability: Locality

« Found multiple violations of traffic
locality

Query | Cluster 1 | Cluster 2 | Cluster 3

== Data Center Router Cc2C 12 (2) 13 (2) 11(2)
AR SNNN——— B2DSP | 11(2) | 112 | 112
| . _

|

Inter Data Center B2DSP 3(1) 4 (1) 4(1)
| Traffic B2CSP 11(2) 11 (2) 11 (2)
B2CSP 11(2) 12 (2) 11 (2)

Border Leaves

Data Center Spines

U Inter Cluster
I Traffic

_ Verification time in seconds
Cluster Spines

Host Leaves

Virtual Machines

Checking Operators’ Beliefs

« Operators cannot specify reachability at
VM level for millions of VMs

- They have “beliefs” of which sets of
stations can reach others

« Found exceptions to operator’s beliefs
« Customer VMs cannot access fabric controllers

« Process of belief refinement helps elicit
specifications

Dynamism Example

- Experimental MPLS-like backbone with
custom forwarding

 Took a few hours to model without any
tool change

« Loop detection in < 1 second

- |dentified 56 flows as black holes in 5
seconds

Performance Comparison

Stanford
Unreach

Stanford
Reachable

Stanford
Loop

Cloud

Cloud 2

12.2 0.1

Model SMT All
Checker Solutions
- 0'1

13.7 1121 - 0.9

11.7 290 - 0.2
Time out Time out -

8.5 Time out -

Run time in seconds

Network Verification in

P§@@mr3ion of NoD: SecGuru

« Local checks on each router
« Deployed in Azure
« Finds ~1 problem per day

« Reduced legacy corporate ACL from
3,000 to 1,000 rules without outages

Conclusion

« NoD Is expressive; takes as input:

 Protocol specification -> Dynamism
« Verification properties -> Beliefs

« More expressive than previous network
verification tools, while competitive in
speed

- Network operators’ beliefs are fragile

« Code and benchmarks available on-line!

Microsoft Research

m Microsoft

