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In the next 20 minutes

* Fixed-function switch chips will be replaced by
reconfigurable switch chips

 We will program them using languages like P4

e We need a compiler to compile P4 programs
to reconfigurable switch chips.




Fixed-Function Switch Chips
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Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality
2. Can’t add new monitoring functionality



Fixed-Function Switch Chips
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Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality
2. Can’t add new monitoring functionality
3. Can’t move resources between functions
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Mapping Control Flow to
Reconfigurable Chip.

Control Flow Graph

Switch Pipeline
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Reconfigurable Switch Chips
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Match Action
Memory ALU
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Match + Action Processor:
pipelined and in-parallel



Reconfigurability: the norm in 5 years

* Reconfigurability adds mostly to logic.
* Logic is getting relatively smaller.
* The cost of reconfigurability is going down.

* Fixed switch chip area today:
—1/0 (40%), Memory (40%),
— Wires, Logic

Switch 1/0
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About Us Products Communities Investors News Careers

S Fixed Function Broadcom Tomahawk: 3.2 Tbps
Reconfigurable Cavium Xpliant: 3.2 Tbps

Broadcom Delivers Industry's First High-Density 25/100 Gigabit Ethernet Switch ‘
for Cloud-Scale Networks

' ~ “etamers, New StrataXGS® Tomahawk™ Series Delivers 3.2 Tbps
é QAVIUM “ ' ~antro| and Visibility Features




Reconfigurable chips are
inevitable.
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P4 (http://p4.org/)
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What does reconfigurability
buy us?



Benefits of Reconfigurability

e Use resources efficiently
— Multiple tables per stage
— Big table in multiple stages

< > -

e Use fewer stages

H H
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Naive Mapping: Control Flow Graph

Control Flow
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Table Dependency Graph (TDG)
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Resource constraints

Control Flow Graph

Switch Pipeline
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More resource constraints

Table parajjgis,

Memory
nemory TYPE

Action

action ALU input

Header gy,
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The Compiler Problem

Map match action tables in a
TDG to a switch pipeline while
respecting dependency and
resource constraints.
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Step 1: P4 Program

Step 2: Control Flow Graph

Step 3: Table Dependency Graph
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Step 4: Table Configuration
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Is that it?



Two Switches We Studied

1 2 3 4 32

- RMT
i | 32 Stages
(SIGCOMM 2013)

ol 0 S, BN

FlexPipe
5 Stages
(Intel FM6000)

HH
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Additional switch features

=1

Table shaping in RMT

=

Table sharing in FlexPipe
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action Memory Table parajjgfjs,

Memory Type
The Compiler Problem
Header Widths action ALU input

Map match action tables in a
TDG to a switch pipeline while
respecting dependency and
resource constraints.

T
able Shaping Table sharing
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* Prioritize one constraint i\-/

First approach: Greedy

e Sort tables

* Map tables one at a time u
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First approach: Greedy

* Prioritize one constraint i——*ﬁ'—*

e Sort tables

* Map tables one at a time

Parser

Sort by
match width
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Too many constraints for Greedy

* Any greedy must sort tables based on a metric
that is a fixed function of constraints.

* As the number of constraints gets larger, it’s
harder for a fixed function to represent the
interplay between all constraints.

 Can we do better than greedy?



Second approach:
Integer Linear Programming (ILP)

Find an optimal mapping.

Pros: Cons:

e Takes in all constraints  Blackbox solver

* Different objectives * Encodingis an art
e Solvers exist (CPLEX) e Slow



ILP Setup

min # stages

subject to:

table sizes table sizes
assigned specified

IV

memories < memories in
assigned — physical stage

dependency constraints
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Experiment Setup

4 datacenter use cases from Intel, Barefoot

* Differ in tables, table sizes, and dependencies



Example Use Case

IG_ACL1 A Typlcal TDG

IG_Phy_ EG_Prop

Meta

IG_Bcast |2z - —

_Storm

1G-Agg-
Intf

Configuration for RMT
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Metrics: Greedy vs ILP

1. Ability to fit program in chip
2. Optimality

3. Runtime



Setup: Greedy vs ILP

1. Ability to fit: FlexPipe

— Variants of use cases in 5-stage pipeline.
2. Optimality: RMT

— Minimum stage, pipeline latency, power

3. Runtime: both switches



Results: Greedy vs ILP

1. Can Greedy fit my program?
— Yes, if resources aplenty (RMT, 32 stages)

— No, if resources constrained (FlexPipe, 5 stages),
Can’t fit 25% of programs .

2. How close to optimal is Greedy?
— 30% more time for packet to get through RMT pipeline.

3. Hmm.. looks like | need ILP. How slow is it?
— 100x slower than Greedy
— Reasonable if programs don’t change often.



If we have time,
we should run ILP.



Use ILP to suggest best Greedy for
program type.

Critical constraints

* Dependency critical: 16 - 13 stages

* Additional resource constraints less important
Critical resources

 TCAM memories critical: 16 = 14 stages
— Results for one of our datacenter L2/L3 use cases



Conclusion

Challenge: Parallelism and constraints in
reconfigurable chips makes compiling difficult.

TDG: highlights parallelism in program.

ILP: better if enough time, fitting is critical, or

objectives are complicated.

Best Greedy: ILP can choose via notion of critical

constraints and critical resources.
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Thank youl!

Research funded by AT&T, Intel, Open Networking Research Center.



ILP Run time

* Number of constraints? Not obvious. E.g., RMT
— Min. stage: few secs.
— Min. power: few secs.
— Min. pipeline latency 10x slower

* Number of variables? How fine-grained is the
resource assignment? E.g., FlexPipe

— One match entry at a time: many days..
— 100-500 match entries ata time: <1 hr



