Building Compilers for
Reconfigurable Switches

Lavanya Jose, Lisa Yan,
Nick McKeown, and George Varghese

Research funded by AT&T, Intel, Open Networking Research Center.

In the next 20 minutes

* Fixed-function switch chips will be replaced by
reconfigurable switch chips

 We will program them using languages like P4

e We need a compiler to compile P4 programs
to reconfigurable switch chips.

Fixed-Function Switch Chips

ueues

L2
Stage

Control Flow Graph

Control Flow Graph

Switch Pipeline

Queues

\ uondYy pPaxi4 /

9|qeLl 10V
]

| uonoy /

Q

o]0)

(qe]
]
Vg

/\

—_

| uopdypaxiy |

U

o|qel vAd|

—

\ uonIY Paxi4 V

19s1ed

Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality
2. Can’t add new monitoring functionality

Fixed-Function Switch Chips

L2 ~ 4 MyEncap I'

Control Flow Graph

Switch Pipeline

Queues

| uomoypaxiy |

9|qeLl 10V

—

| uopdy |

o]0
d|gel g
9Ad| AN
|

[

uoLIY PaXi4 /

o|qel vAd|

uonIY Paxi4 V

19s1ed

Fixed-Function Switch Chips Are
Limited

1. Can’t add new forwarding functionality
2. Can’t add new monitoring functionality
3. Can’t move resources between functions

Fixed Action

c
S o
de)
O (@]
< <

No)
a Q
4 x
Lt L

Queues
8

0J2B|\ UOLDY /

3|gel Yyoie

0J2B|\ UOLDY /

9|gel Yyoien

0J2B[A UOLDY /

3|qel yore

figurable Switch Chips

0J2B|A UOLDY /

3lqeL yarew

Recon

19s1ed

Control Flow Graph
Switch Pipeline

Mapping Control Flow to
Reconfigurable Chip.

Control Flow Graph

Switch Pipeline

T~ [- < \O
o (@] T
= - O
© v I o | = o |BS Queues
L | = o |B= B o
Q » = © cC — (@) (g0} g
& o | S < | -
. < ! O —l P
& 3 > " z o O P
< =l < = < |
@\l <)
| S b
I- — ™ = —

Reconfigurable Switch Chips

~ 4 MyEncap

Control Flow Graph

Switch Pipeline

Queues

Action

ACL Table

Parser

\ ACL Action Macro/

\ L2 Action Macro /

Action

10

Match Action
Memory ALU

It

LT

\obm_\/_ uondY 1DV /

w .. \/

T —

\Eum_\/_ uondy 9A /

9|qeLl 9Ad|

\ 0J2B|A UOLDY PA /

T ™=

\ 0J2B|A UOLDY 7] /

Protocol Independent Switch

11

111t
il
uonoy E

o|ge] 2|ge
VAd|

T —
o

o|qel vAdI m,m—ﬁ—_

\ 0J2B|A UOLDY HA /

—
>
>
=

—>
>

w .‘ ‘ (]

T

\ 0J2B|A UOLDY 7] /

——

19sied

%

12

Match + Action Processor:
pipelined and in-parallel

Reconfigurability: the norm in 5 years

* Reconfigurability adds mostly to logic.
* Logic is getting relatively smaller.
* The cost of reconfigurability is going down.

* Fixed switch chip area today:
—1/0 (40%), Memory (40%),
— Wires, Logic

Switch 1/0

-

About Us Products Communities Investors News Careers

S Fixed Function Broadcom Tomahawk: 3.2 Tbps
Reconfigurable Cavium Xpliant: 3.2 Tbps

Broadcom Delivers Industry's First High-Density 25/100 Gigabit Ethernet Switch ‘
for Cloud-Scale Networks

' ~ “etamers, New StrataXGS® Tomahawk™ Series Delivers 3.2 Tbps
é QAVIUM “ ' ~antro| and Visibility Features

Reconfigurable chips are
inevitable.

Switch Chips

figuring

Con

Compiler Target

Queues

17

\ 0J2B|A] UOLIY /

3|qeL Yd1e

\ 0J2BJA] UOLIY /

3|gel Yyoien

\ 0J2B|A\ UOLDY /

9|ge] YdleA

\ 0J2B|A] UOLIY /

3|qel yore

13sJed

P4 (http://p4.org/)

__

~ Match Action control Flow Graph
Parser Tables
(ANCS’13) ’ '

arser parse ethernet ({

control ingress

> 8= = |B= = &= = | & Queues
(& (g0} © 3] © © (g0} © © l
0 | = = = o = w2
© G 3 S 3 S 3 sl S
o o . +) + ! = - |
s [k o £ < s [k
= 2 = |5 = (B =N <
" B - "

18

What does reconfigurability
buy us?

Benefits of Reconfigurability

e Use resources efficiently
— Multiple tables per stage
— Big table in multiple stages

< > -

e Use fewer stages

H H

20

Naive Mapping: Control Flow Graph

Control Flow

Switch Pipeline

Queues

\ uonoy /co_pu< /
o|qel

J01eN

10V

]

Nobm_\,_ uondy 9A M

9|qeLl SAd|

\ 0JJB[A| UOLDY YA /

o[qel vAd|

]

\g/co.sé \

19s1ed

21

Table Dependency Graph (TDG)

Bt B

Control Flow Graph

Table Dependency Graph

= B n

Queues

TDG

23

mb \obm_\,_ uondy 9A /
@) 9lqel 9AdI
Q.
(q0]
M \ 0J2B|A UOLDY PA /
s
Q
* m— —
O
Mm / uonay /
LL]
1l

J9sied

Cobitrél FbewdaraphGraph

Switch Pipeline

Resource constraints

Control Flow Graph

Switch Pipeline

o o P
(il b (@) Q
e © © = A Queues
0 S S = 5
O ' = ‘= - B
% : 4 o E o | <
(.U .-D u <
(=¥ ' éf) <
O
S B > -
™ "

24

More resource constraints

Table parajjgis,

Memory
nemory TYPE

Action

action ALU input

Header gy,

25

The Compiler Problem

Map match action tables in a
TDG to a switch pipeline while
respecting dependency and
resource constraints.

26

Step 1: P4 Program

Step 2: Control Flow Graph

Step 3: Table Dependency Graph

E 6

Step 4: Table Configuration

B

10
0

Is that it?

Two Switches We Studied

1 2 3 4 32

- RMT
i | 32 Stages
(SIGCOMM 2013)

ol 0 S, BN

FlexPipe
5 Stages
(Intel FM6000)

HH

29

Additional switch features

=1

Table shaping in RMT

=

Table sharing in FlexPipe

30

action Memory Table parajjgfjs,

Memory Type
The Compiler Problem
Header Widths action ALU input

Map match action tables in a
TDG to a switch pipeline while
respecting dependency and
resource constraints.

T
able Shaping Table sharing

31

* Prioritize one constraint i\-/

First approach: Greedy

e Sort tables

* Map tables one at a time u

Parser

\

i

|)

|

I

Sort by

dependencies

\

Queues

32

First approach: Greedy

* Prioritize one constraint i——*ﬁ'—*

e Sort tables

* Map tables one at a time

Parser

Sort by
match width

\

X

Queues

33

Too many constraints for Greedy

* Any greedy must sort tables based on a metric
that is a fixed function of constraints.

* As the number of constraints gets larger, it’s
harder for a fixed function to represent the
interplay between all constraints.

 Can we do better than greedy?

Second approach:
Integer Linear Programming (ILP)

Find an optimal mapping.

Pros: Cons:

e Takes in all constraints Blackbox solver

* Different objectives * Encodingis an art
e Solvers exist (CPLEX) e Slow

ILP Setup

min # stages

subject to:

table sizes table sizes
assigned specified

IV

memories < memories in
assigned — physical stage

dependency constraints

36

Experiment Setup

4 datacenter use cases from Intel, Barefoot

* Differ in tables, table sizes, and dependencies

Example Use Case

IG_ACL1 A Typlcal TDG

IG_Phy_ EG_Prop

Meta

IG_Bcast |2z - —

_Storm

1G-Agg-
Intf

Configuration for RMT

9 10 11 12 13 14 15 16 38

Metrics: Greedy vs ILP

1. Ability to fit program in chip
2. Optimality

3. Runtime

Setup: Greedy vs ILP

1. Ability to fit: FlexPipe

— Variants of use cases in 5-stage pipeline.
2. Optimality: RMT

— Minimum stage, pipeline latency, power

3. Runtime: both switches

Results: Greedy vs ILP

1. Can Greedy fit my program?
— Yes, if resources aplenty (RMT, 32 stages)

— No, if resources constrained (FlexPipe, 5 stages),
Can’t fit 25% of programs .

2. How close to optimal is Greedy?
— 30% more time for packet to get through RMT pipeline.

3. Hmm.. looks like | need ILP. How slow is it?
— 100x slower than Greedy
— Reasonable if programs don’t change often.

If we have time,
we should run ILP.

Use ILP to suggest best Greedy for
program type.

Critical constraints

* Dependency critical: 16 - 13 stages

* Additional resource constraints less important
Critical resources

 TCAM memories critical: 16 = 14 stages
— Results for one of our datacenter L2/L3 use cases

Conclusion

Challenge: Parallelism and constraints in
reconfigurable chips makes compiling difficult.

TDG: highlights parallelism in program.

ILP: better if enough time, fitting is critical, or

objectives are complicated.

Best Greedy: ILP can choose via notion of critical

constraints and critical resources.

!

|

i

D

o

HE

T 44

Thank youl!

Research funded by AT&T, Intel, Open Networking Research Center.

ILP Run time

* Number of constraints? Not obvious. E.g., RMT
— Min. stage: few secs.
— Min. power: few secs.
— Min. pipeline latency 10x slower

* Number of variables? How fine-grained is the
resource assignment? E.g., FlexPipe

— One match entry at a time: many days..
— 100-500 match entries ata time: <1 hr

