FastRoute:
A Scalable Load-Aware Anycast Routing Architecture for Modern CDNs

Ashley Flavel, Pradeepkumar Mani, David A. Maltz, Nick Holt, Jie Liu, Yingying Chen, Oleg Surmachev
FastRoute Overview

• Microsoft’s online services exist inside small set of datacenters distributed throughout the world.

• “Edge” nodes distributed throughout the Internet reduce network latency of such services.

• FastRoute is the fully distributed mechanism used to direct users to nearby edge.
Why use an Edge?
Why use an Edge?
Why use an Edge?

RTT = 180ms

Network Latency of first-byte = 2*RTT (360ms)
Why use an Edge?

Network Latency of first-byte
= 2*(short) RTT + 1*(long) RTT
= 210ms

Savings of 150ms by using edge
Which edge for which user?

- Which edge do I direct users to?
- How do I direct users to the right edge?
The “Map the Internet” Approach

• Primary Benefit
 • Flexible Control: Can direct any DNS request to any node

• Trade off
 • High operational cost and complexity (Large scale central global co-ordinator required)
 • DNS can be inaccurate for client proximity routing.
The “Map the Internet” Approach

• Primary Benefit
 • Flexible Control: Can direct any DNS request to any node

• Trade off
 • High operational cost and complexity (Large scale central global co-ordinator required)
 • DNS can be inaccurate for client proximity routing.

• There is an alternative...
The Anycast Approach

• Benefits
 • Simple
 • Avoids DNS-based proximity routing

• Trade off
 • Relinquish routing control to “The Internet”
FastRoute

• Design Goals:
 • Simple (easy to operate)
 • Highly available (minimal downtime)
 • High Performance (better than existing solution)

• Desire:
 • A solution with the simplicity of Anycast, with *just enough* control to handle overloaded nodes.
FastRoute

Questions:
1. Does Anycast provide sufficient performance?
2. How can we manage the rare (but expected) individual overloaded node without sacrificing Anycast’s simplicity?
Performance of Anycast?

Note: Anything above 0% is good.
Not all Nodes are Equal!
Utilizing Anycast “Layers”
Load Management using Anycast Layers
Load Management using Anycast Layers

Note: Architecture choice not to send traffic to another edge in same layer. This prevents oscillatory behavior.
Anycast layer 0 is provisioned to absorb overflow. Further optimization can occur to improve absorption in this layer.
How to “throw” traffic to next layer?

1. Co-locate DNS servers with HTTP proxies in every location
How to “throw” traffic to next layer?

1. Co-locate DNS servers with HTTP proxies in every location
2. DNS monitors load in its own location
How to “throw” traffic to next layer?

1. Co-locate DNS servers with HTTP proxies in every location
2. DNS monitors load in its own location
3. DNS probabilistically returns a CNAME (DNS redirection) to next layer
How to “throw” traffic to next layer?

1. Co-locate DNS servers with HTTP proxies in every location
2. DNS monitors load in its own location
3. DNS probabilistically returns a CNAME (DNS redirection) to next layer

Preserves the independence of each node (no real-time communication outside a node).
How to “throw” traffic to next layer?

• Major assumption
 • DNS request for a user lands in the same location as HTTP request (i.e. self-correlated)
How to “throw” traffic to next layer?

• Major assumption
 • DNS request for a user lands in the same location as HTTP request (i.e. self-correlated)

• This is not guaranteed for all requests.
How to “throw” traffic to next layer?

• Major assumption
 • DNS request for a user lands in the same location as HTTP request (i.e. self-correlated)

• This is not guaranteed for all requests.

• Is it good enough?
FastRoute Self-Correlation

Ideal 100% self-correlated
DNS Load Management In Practice
Basic Architecture Summary

• Statically configure edges in multiple Anycast layers
• Each edge *independently* monitors its own load and decides whether to “throw” traffic to the next layer.
• Final layer is dimensioned sufficiently to handle all load

• *Edge nodes act independently without any knowledge outside the edge.*
FastRoute:
A Scalable Load-Aware Anycast Routing Architecture for Modern CDNs

Questions?