
mTCP: A Highly Scalable User-level TCP

Stack for Multicore Systems

EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong

Sunghwan Ihm*, Dongsu Han, and KyoungSoo Park

KAIST * Princeton University

Needs for Handling Many Short Flows

2

End systems
- Web servers

61%

91%

0%

20%

40%

60%

80%

100%

0 4K 16K 64K 256K 1M

C
D

F

FLOW SIZE (BYTES)

Flow count

* Commercial cellular traffic for 7 days
Comparison of Caching Strategies in
Modern Cellular Backhaul Networks,
MOBISYS 2013

32K

Middleboxes
- SSL proxies
- Network caches

Unsatisfactory Performance of Linux TCP

3

• Large flows: Easy to fill up 10 Gbps

• Small flows: Hard to fill up 10 Gbps regardless of # cores
– Too many packets:

14.88 Mpps for 64B packets in a 10 Gbps link

– Kernel is not designed well for multicore systems

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 6 8

C
o

n
n

e
ct

io
n

s/
se

c
(x

 1
0

5
)

Number of CPU Cores

TCP Connection Setup Performance

Linux: 3.10.16
Intel Xeon E5-2690
Intel 10Gbps NIC

Performance meltdown

Kernel Uses the Most CPU Cycles

4

83% of CPU usage spent
inside kernel!

Performance bottlenecks
1. Shared resources
2. Broken locality
3. Per packet processing

1) Efficient use of CPU cycles
for TCP/IP processing
 2.35x more CPU cycles for app

2) 3x ~ 25x better performance

Bottleneck removed
by mTCPKernel

(without TCP/IP)
45%

Packet I/O
4%

TCP/IP
34%

Application
17%

CPU Usage Breakdown of Web Server
Web server (Lighttpd) Serving a 64 byte file
Linux-3.10

Inefficiencies in Kernel from Shared FD

1. Shared resources

– Shared listening queue

– Shared file descriptor space

5

Per-core packet queue

Receive-Side Scaling (H/W)

Core 0 Core 1 Core 3Core 2

Listening queue

Lock

File descriptor space

Linear search for finding empty slot

Inefficiencies in Kernel from Broken Locality

2. Broken locality

6

Per-core packet queue

Receive-Side Scaling (H/W)

Core 0 Core 1 Core 3Core 2

Interrupt
handle

accept()
read()
write()

Interrupt handling core != accepting core

Inefficiencies in Kernel from Lack of Support for Batching

3. Per packet, per system call processing

Inefficient per packet processing

Frequent mode switching
Cache pollution

Per packet memory allocation

Inefficient per system call processing

7

accept(), read(), write()

Packet I/O

Kernel TCP

Application thread

BSD socket LInux epoll
Kernel

User

Previous Works on Solving Kernel Complexity

8

Listening
queue

Connection
locality

App <-> TCP
comm.

Packet I/O API

Linux-2.6 Shared No Per system call Per packet BSD

Linux-3.9
SO_REUSEPORT

Per-core No Per system call Per packet BSD

Affinity-Accept Per-core Yes Per system call Per packet BSD

MegaPipe Per-core Yes
Batched
system call

Per packet custom

How much performance improvement can we get
if we implement a user-level TCP stack with all optimizations?

Still, 78% of CPU cycles are used in kernel!

Clean-slate Design Principles of mTCP

9

• mTCP: A high-performance user-level TCP designed for
multicore systems

• Clean-slate approach to divorce kernel’s complexity

Each core works independently

– No shared resources

– Resources affinity

1. Shared resources

2. Broken locality

Problems Our contributions

Batching from flow processing from
packet I/O to user API

3. Lack of support for
batching

Easily portable APIs for compatibility

Overview of mTCP Architecture

10

1. Thread model: Pairwise, per-core threading

2. Batching from packet I/O to application

3. mTCP API: Easily portable API (BSD-like)

User-level packet I/O library (PSIO)

mTCP thread 0 mTCP thread 1

Application
Thread 0

Application
Thread 1

mTCP socket mTCP epoll

NIC device driver Kernel-level

1
2

3

User-level

Core 0 Core 1

• [SIGCOMM’10] PacketShader: A GPU-accelerated software router,
http://shader.kaist.edu/packetshader/io_engine/index.html

http://shader.kaist.edu/packetshader/io_engine/index.html

1. Thread Model: Pairwise, Per-core Threading

11

User-level packet I/O library (PSIO)

mTCP thread 0 mTCP thread 1

Application
Thread 0

Application
Thread 1

mTCP socket mTCP epoll

Device driver

Core 0 Core 1

Symmetric Receive-Side Scaling (H/W)

Per-core
packet queue

Per-core
listening queue

Per-core file
descriptor

Kernel-level

User-level

From System Call to Context Switching

12

Packet I/O

Kernel TCP

Application thread

BSD socket LInux epoll

User-level packet I/O library

mTCP thread

Application Thread

NIC device driver

mTCP socket mTCP epoll
Kernel

User

Linux TCP mTCP

System call Context switching

From System Call to Context Switching

13

Packet I/O

Kernel TCP

Application thread

BSD socket LInux epoll

User-level packet I/O library

mTCP thread

Application Thread

NIC device driver

mTCP socket mTCP epoll
Kernel

User

Linux TCP mTCP

System call Context switching

higher overhead

<
Batching to amortize
context switch overhead

2. Batching process in mTCP thread

Accept
queue

S S/A F/A

Data list

ACK list

Control list

TX manager

Connect
queue

Application thread

SYN RST FIN

Data list

Write
queue

Close
queue

write()

Rx manager

Payload handler

Socket API

Internal event queue

Event
queue

ACK list

Control list

TX manager

connect() close()epoll_wait()accept()

SYN ACK

Data

14
Rx queue Tx queue

mTCP thread

3. mTCP API: Similar to BSD Socket API

• Two goals: Easy porting + keeping popular event model

• Ease of porting

– Just attach “mtcp_” to BSD socket API

– socket() mtcp_socket(), accept() mtcp_accept(), etc.

• Event notification: Readiness model using epoll()

• Porting existing applications

– Mostly less than 100 lines of code change

15

Application Description Modified lines / Total lines

Lighttpd An event-driven web server 65 / 40K

ApacheBench A webserver performance benchmark tool 29 / 66K

SSLShader A GPU-accelerated SSL proxy [NSDI ’11] 43 / 6,618

WebReplay A web log replayer 81 / 3,366

Optimizations for Performance

16

• Lock-free data structures

• Cache-friendly data structure

• Hugepages for preventing TLB missing

• Efficient TCP timer management

• Priority-based packet queuing

• Lightweight connection setup

• ……

Please refer to our paper

mTCP Implementation

17

• 11,473 lines (C code)

• Packet I/O, TCP flow management, User-level socket API,
Event system library

• 552 lines to patch the PSIO library

• Support event-driven packet I/O: ps_select()

• TCP implementation

• Follows RFC793

• Congestion control algorithm: NewReno

• Passing correctness test and stress test with Linux TCP stack

Evaluation

18

• Scalability with multicore

• Comparison of performance of multicore with previous
solutions

• Performance improvement on ported applications

• Web Server (Lighttpd)
– Performance under the real workload

• SSL proxy (SSL Shader, NSDI 11)
– TCP bottlenecked application

0

3

6

9

12

15

0 2 4 6 8

Tr
an

sa
ct

io
n

s/
se

c
(x

 1
0

5)

Number of CPU Cores

Linux REUSEPORT MegaPipe mTCP

1

Multicore Scalability

• 64B ping/pong messages per connection
• Heavy connection overhead, small packet processing overhead
• 25x Linux, 5x SO_REUSEPORT*[LINUX3.9], 3x MegaPipe*[OSDI’12]

19

Shared fd in process

Shared listen socket

* [LINUX3.9] https://lwn.net/Articles/542629/
* [OSDI’12] MegaPipe: A New Programming Interface for Scalable Network I/O, Berkeley

Inefficient small packet
processing in Kernel

0

3

6

9

12

15

0

3

6

9

12

15

0

3

6

9

12

15

0

3

6

9

12

15 Linux: 3.10.12
Intel Xeon E5-2690
32GB RAM
Intel 10Gbps NIC

Performance Improvement on Ported Applications

Web Server (Lighttpd)
• Real traffic workload: Static file

workload from SpecWeb2009 set

• 3.2x faster than Linux

• 1.5x faster than MegaPipe

SSL Proxy (SSLShader)
• Performance Bottleneck in TCP

• Cipher suite
1024-bit RSA, 128-bit AES, HMAC-
SHA1

• Download 1-byte object via HTTPS

• 18% ~ 33% better on SSL handshake

20

1.24
1.79

2.69

4.02

0

1

2

3

4

5

Linux REUSEPORT MegaPipe mTCP

Th
ro

u
gh

p
u

t
(G

b
p

s) 26,762 28,208 27,725
31,710

36,505 37,739

0
5

10
15
20
25
30
35
40

4K 8K 16K

Tr
an

sa
ct

io
n

s/
se

c
(x

 1
0

3
)

Concurrent Flows

Linux

mTCP

Conclusion

• mTCP: A high-performing user-level TCP stack
for multicore systems
– Clean-slate user-level design to overcome inefficiency in kernel

• Make full use of extreme parallelism & batch processing
– Per-core resource management

– Lock-free data structures & cache-aware threading

– Eliminate system call overhead

– Reduce context switch cost by event batching

• Achieve high performance scalability
– Small message transactions: 3x to 25x better

– Existing applications: 33% (SSLShader) to 320% (lighttpd)

21

Thank You

Source code is available at
http://shader.kaist.edu/mtcp/

https://github.com/eunyoung14/mtcp

http://shader.kaist.edu/mtcp/
https://github.com/eunyoung14/mtcp

