I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks

Nikhil Handigol

With
Brandon Heller, Vimal Jeyakumar, David Mazières, Nick McKeown
NSDI 2014, Seattle, WA
April 2, 2014
Bug Story: Incomplete Handover

Switch

Match: Action
Src A, Dst B: Output to Y

WiFi AP Y

WiFi AP Z

A

B
Network Outages
make news headlines

On April 26, 2010, NetSuite suffered a service outage that rendered its cloud-based applications inaccessible to customers worldwide for 30 minutes... NetSuite blamed a network issue for the downtime.

Hosting.com's New Jersey data center was taken down on June 1, 2010, igniting a cloud outage and connectivity loss for nearly two hours... Hosting.com said the connectivity loss was due to a software bug in a Cisco switch that caused the switch to fail.

The Planet was rocked by a pair of network outages that knocked it offline for about 90 minutes on May 2, 2010. The outages caused disruptions for another 90 minutes the following morning.... Investigation found that the outage was caused by a fault in a router in one of the company's data centers.
Troubleshooting Networks is Hard Today

- ping
- traceroute
- SNMP
- tcpdump/SPAN/sFlow

- Tedious and ad hoc
- Requires skill and experience
- Not guaranteed to provide helpful answers

(source: NANOG Survey in “Automatic Test Packet Generation”, Hongyi Zeng, et. al.)
We want complete network visibility.

Complete visibility: every event that ever happened to every packet.
Talk Outline

1. How to achieve complete network visibility
 – An abstraction: Packet History
 – A platform: NetSight

2. Why achieving complete visibility is feasible
 – Data compression
 – MapReduce-style scale-out design
Packet History

Packet history = Path taken by a packet
+ Header modifications
+ Switch state encountered
Our Troubleshooting Workflow

1. Record and store all packet histories
2. Query and use packet histories of errant packets
NetSight
A platform to capture and filter packet histories of interest
Postcard Collector

Control Plane

Flow

State

Recorder

Match ACT

Match ACT
Step 1: Generate postcards
Reconstructing Packet Histories

Step 2: Group postcards by generating packet
Reconstructing Packet Histories

Step 3: Sort postcards using topology
Troubleshooting Apps

- Reachability errors
- Isolation violation
- Black holes
- Waypoint routing violation

NetSight API

Packet History Filter: A regular-expression-like language to specify packet histories of interest
Bug Story: Incomplete Handover

Packet History Filter
"Pkts from server not reaching the client"

Packet History

Switch X:
inport: p0,
outports: [p1]
mods: [...]
state version: 3

Switch Y:
inport p1,
outports: [p3]
mods: ...
...
Troubleshooting Apps

ndb: Interactive network debugger

nprof: Hierarchical network profiler

netwatch: Live network invariant monitor

netshark: Network-wide wireshark
But will it scale?
Why generating postcards for every packet at every hop is crazy!

Network Overhead
- 64 byte-postcard/pkt/hop
- Stanford Network: 5 hops avg, 1031 byte avg pkt
- 31% extra traffic!

Processing Overhead
- Packet history assembly and filtering

Storage Overhead
Why generating postcards for every packet at every hop is not \textsuperscript{\text{\texttt{\textasciicircum}}^\text{\texttt{\textasciicircum}}^{\text{\texttt{\textasciicircum}}}} crazy!

\textbf{Cost is OK for low-utilization networks}

\begin{itemize}
 \item E.g., test networks, “bring-up phase” networks
 \item Single server can handle entire Stanford traffic
\end{itemize}
Why generating postcards for every packet at every hop is *not* crazy!

Huge redundancy in packet header fields

- Only a few fields change – IP ID, TCP seq. no.
- Postcards can be compressed to 10-20 bytes/pkt

&Daggar Diff-based compression
Why generating postcards for every packet at every hop is not crazy!

Postcard processing is embarrassingly parallel

– Each packet history can be processed independent of other packet histories
Scaling NetSight Performance

Postcards → NetSight Server → Compressed Postcard Lists → Shuffle → NetSight Server → Disk

Switch

Switch

Switch

Compressed Packet Histories

NetSight Server

NetSight Server

NetSight Server

NetSight Server

Disk

Disk

Disk

Disk
Scaling NetSight Performance

Postcards → NetSight Server → Compressed Postcard Lists → NetSight Server → Compressed Packet Histories → Disk

NetSight Server → Shuffle → NetSight Server

Disk

Postcards

NetSight Server

Compressed Postcard Lists

NetSight Server

Compressed Packet Histories

Disk
Scaling NetSight Performance

Postcards

Switch

NetSight Server

NetSight Server

Switch

NetSight Server

Compressed Postcard Lists

Switch

NetSight Server

NetSight Server

NetSight Server

NetSight Server

Switch

NetSight Server

Compressed Packet Histories

Disk

Disk

Disk

Postcards

Compressed Postcard Lists

Shuffle

Compressed Packet Histories
Scaling NetSight Performance

Postcards → NetSight Server → Compressed Postcard Lists → NetSight Server → Disk

Switch → NetSight Server → Shuffle → NetSight Server → Disk

Switch → NetSight Server → Shuffle → NetSight Server → Disk

Switch → NetSight Server → Shuffle → NetSight Server → Disk

…
NetSight Variants
NetSight-SwitchAssist moves postcard compression to switches

Move postcard compression to switches with simple hardware mechanisms
NetSight-HostAssist exploits visibility from the hypervisor

1. Store packet header at the hypervisor
2. Add unique pkt ID

Mini-postcards contain only unique pkt ID and switch state version
Overhead Reduction in NetSight

Basic (naïve) NetSight: 31% extra traffic in Stanford backbone network

NetSight Switch-Assist: 7%

NetSight Host-Assist: 3%
Takeaways

Complete network visibility is possible

– **Packet History**: a powerful troubleshooting abstraction that gives complete visibility

– **NetSight**: a platform to capture and filter packet histories of interest

Complete network visibility is feasible

– It is possible to collect and filter packet histories at scale
I Know What Your Packet Did Last Hop:
Using Packet Histories to Troubleshoot Networks

Nikhil Handigol†, Brandon Heller†, Vimalkumar Jeyakumar†, David Mazières, Nick McKeown

Abstract

The complexity of networks has outpaced our tools to debug them; today, administrators use manual tools to diagnose problems. In this paper, we show how packet histories—the full stories of every packet's journey through the network—can simplify network diagnosis. To demonstrate the usefulness of packet histories and the practical feasibility of constructing them, we built NetSight, an extensible platform that captures packet histories and enables applications to concisely and flexibly retrieve packet histories of interest. Atop NetSight, we built four applications that illustrate its flexibility: an interactive network debugger, a live invariant monitor, a path-aware history logger, and a hierarchical network profiler. On a single modern multi-core server, NetSight can process packet histories for the traffic of multiple 10 Gb/s links. For larger networks, NetSight scales linearly with additional servers and scales even further with straightforward additions to hardware- and hypervisor-based switches.

1. “Host A cannot talk to host B. Show me where packets from A intended for B are going, along with any header modifications.”
2. “I don’t want forwarding loops in my network, even transient ones. Show me every packet that passes the same switch twice.”
3. “Some hosts are failing to grab IP addresses. Show me where DHCP traffic is going in the network.”
4. “One port is experiencing congestion. Show me the traffic sources causing the congestion.”

These four applications run on top of a prototype platform we built, called NetSight. With a view of...