Software Diversity: Security, Entropy and Game theory

Saran Neti, Anil Somayaji, Michael Locasto

CCSL, Carleton University (Neti, Somayaji)
University of Calgary (Locasto)

August 7, 2012
Motivation to study diversity

If you **don’t** want to keep all your eggs in one basket, then

- How many baskets do you need?
- How should you distribute eggs among baskets?

Is it possible to quantify this popular notion?
Outline

- Model of a software ecosystem
- Diversity measures
- Anti coordination games
- Capture the diversity
Model - Sets

Software is a bag of vulnerabilities as far as security is concerned

- **Graph** with n hosts, m vulnerabilities, and k vulnerabilities/host.
 - Vertices - $H = h_1, h_2, ..., h_n$, $V = v_1, v_2, .., v_m$
 - If a host has a vulnerability, there is an edge connecting their vertices.
 - A bipartite graph with kN edges distributed over M vulnerabilities.

- **Software** is a set of vulnerabilities.
 - If a vulnerability v_i is exploited, then $\text{deg}(v_i)$ hosts are affected.
 - A host’s *strategy* is a subset of vulnerabilities $S = w_1, w_2, ..w_l \subset V$
If vulnerabilities are what matter for security, let's focus on that.
Assumptions
Make all the assumptions you need

1. **Asset value** is uniform. *(Low value targets)*
 - All hosts are equally valuable.
 - All hosts have same number, k, of vulnerabilities.

2. **Residual vulnerabilities** don’t change with time. *(Steady state)*
 - If a vulnerability is discovered and patched, nothing changes.
 - Software and vulnerabilities are synonymous.

3. **Vulnerability criticality**
 - An exploit results in complete host compromise.
 - Targeted attacks are not considered.
Diversity measures

(1) How many varieties are needed? (2) How are they distributed?

- Set of vulnerabilities $V = \{ v_1, v_2, \ldots v_m \}$
- Define $p_i = \frac{\text{deg}(v_i)}{nk}$
- Diversity number $= N_a = (\sum_{i=1}^{m} p_i^a)^{1/(1-a)}$
- Renyi Entropy $= \log(N_a)$
- Shannon Entropy is a special case when $a = 1$
Can we actually calculate diversity?

Market share and Vulnerability data taken from Netmarketshare and NVD

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Vulnerabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1</td>
<td>v1: Windows – 244 vuls, Market Share - 91%</td>
</tr>
<tr>
<td>h2</td>
<td>v2: Linux – 57 vuls, Market Share - 3%</td>
</tr>
<tr>
<td>h3</td>
<td>v3: OSX – 204 vuls, Market Share - 6%</td>
</tr>
<tr>
<td>h4</td>
<td>v4: IE – 99 vuls, Market Share - 56%</td>
</tr>
<tr>
<td>h5</td>
<td>v5: Firefox – 106 vuls, Market Share - 23%</td>
</tr>
<tr>
<td>h6</td>
<td>v6: Chrome – 266 vuls, Market Share - 21%</td>
</tr>
<tr>
<td>h7</td>
<td></td>
</tr>
<tr>
<td>hn</td>
<td></td>
</tr>
</tbody>
</table>
Diversity number \(N_a = \left(\sum_{i=1}^{m} p_i^a \right)^{1/(1-a)} \) versus \(a \)

The parameter \(a \) changes the relative importance of Factors 1 and 2.

Diversity Number \(N_a \) vs \(a \)

- \(G1 \): Actual - Based only on market share
- \(G2 \): Actual - Weighted by \# of vulnerabilities
- \(G3 \): Ideal - Equal market share for all OS
Anti Coordination Game

Why should we care about diversity measures or entropy?

- What kinds of games do we play in software security?
- Do those games have high entropy outcomes?

- When $c_w < c_2$, there are two pure strategy Nash equilibria
- But there is also a mixed strategy Nash equilibrium.

<table>
<thead>
<tr>
<th></th>
<th>Stay</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay</td>
<td>$-c_2, -c_2$</td>
<td>$0, -c_w$</td>
</tr>
<tr>
<td>Switch</td>
<td>$-c_w, 0$</td>
<td>$-(c_2 + c_w), -(c_2 + c_w)$</td>
</tr>
</tbody>
</table>
Dispersion Games

How does vulnerability risk grow as market share increases?

- Same game, but with n players, m vulnerabilities.
- Let $\pi(n)$ be the risk − profit payoff multiplier.
- Let $c_0 = \text{unit cost of a vulnerability and } c_w = \text{cost of switching out a vulnerability}.$
- Then at equilibrium, $\pi(n_s) = \pi(n - (m - 1)n_s) - c_w/c_0$.
- Where $(m - 1)n_s = \text{number of players who switch}.$
Capture the diversity
What kind of π do people want?

Capture the flag
- Several teams have identical VMs with buggy services.
- Ex. mail server, web server etc.
- Points for attacking, defending and to keep all services running.

Capture the diversity
- Simulate options.
- Ex. 2 mail servers: exim or postfix. 2 web servers.
- Keep 1 out of 2 services running.
- Which software will teams select? Most popular? Least popular?
- What will the Host - Vulnerability graph look like?
- How does entropy change with time?
Conclusion

- Diversity := Number of varieties and Distribution of varieties.
- Entropy measures the tradeoff in uncertainty.
- Game theory analyses the tradeoff in strategies.
- Capture the diversity empirically determines the tradeoff in user choice.

Thank You