
Do we need a crystal
ball for task migration?

Brandon {Myers,Holt}

University of Washington
bdmyers@cs.washington.edu

1

Large data sets

Data

2

Spread data

Data.1 Data.2 Data.3 Data.4 Data.0 Data.1 Data.2 Data.3

3

Spread data

Data.1 Data.2 Data.3 Data.4 Data.0 Data.1 Data.2 Data.3

4

Resources:
compute, bandwidth

Data.1 Data.2 Data.3 Data.4 Data.0 Data.1 Data.2 Data.3

5

Task migration
• move a running task to another node

• purpose:
o increase utilization or manage resources

o move task near tasks that share data

o move task closer to data it will access

• costs:
o moving local data required for the task to proceed

o cpu time to stop and resume a task

6

Prior work
• task migration for:

o efficient use of resources

o load balancing

• thread placement on cache coherent

systems using sharing information1

• prediction for migration on NoC2

7

1. F. Song et al. Analytical modeling and optimization for affinity based thread scheduling on multicore systems.
CLUSTER '09.

2. Chao Wang et al. Packet Triggered Prediction Based Task Migration for Network-on-Chip. 20th Euromicro
International Conference on Parallel, Distributed and Network-based Processing, Feb ‘12

Non-uniform cost to access
shared data

Shared

Local

PGAS

8

Exploit locality

Shared PGAS

Local

9

node0 node1 node2 node3

10

load (<node1>)

node 0

node 1

node 2

time

REMOTE

11

load (<node1>) load (<node1>)

node 0

node 1

node 2

time

REMOTE

LOCAL

REMOTE

12

load (<node2>) load (<node1>) load (<node1>) load (<node1>)

node 0

node 1

node 2

time

REMOTE REMOTE REMOTE REMOTE

REMOTE

REMOTE LOCAL LOCAL

13

load (<node2>) load (<node1>) load (<node1>) load (<node1>)

node 0

node 1

node 2

time

REMOTE REMOTE REMOTE REMOTE

REMOTE

REMOTE LOCAL LOCAL

• consider task migration as a prediction problem

• can we predict when it will be more efficient

 to move the data to the task,

 or move the task to the data?

Question

14

Outline
• Motivation

• System model and cost metric

• Online migration predictors

• Evaluation

15

System model
• assumption: network is limiting resource

• simplification: flat network topology
o only distinguish between local and remote shared memory

• cost metric: bytes transferred over the network
o others are possible; this is enough to capture network usage

o no timing required

16

Optimal task migration
• What is the best possible cost for a given

execution?

• Find the schedule of migrations that

minimizes bytes transferred

• Model excludes timing => schedules can be

calculated independently for each task

17

18

load (<node2>) load (<node1>) load (<node1>) load (<node1>)

node 0

node 1

node 2

time

REMOTE REMOTE REMOTE REMOTE

REMOTE

REMOTE LOCAL LOCAL

Optimal schedule

Outline
• Motivation

• System model and cost metric

• Online migration policies

• Evaluation

19

Online policies
• predict whether a migration will give benefit

• look at past access patterns

• similar to prefetch prediction in computer

architecture

20

Migration predictors

21

predictor

history of past
memory
accesses

current node

estimate of
task size

{stay,migrate}

target node

Stream Predictor policy
• influenced by stream buffer* prefetch prediction

• migrate task when it has seen ‘enough’ references

to the same node in the immediate past

0 0 1 2 2 4 2 2 2 1 2 2 2 0 2 3

PC

0 0 1 2 2 4 2 2 2 1 2 2 2 0 2 3

22

Node:

time

*N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. 17th ISCA '90, pages 364{373, New York, NY, USA, 1990. ACM.

Stream Predictor policy
• disadvantages of Stream:

o do extra remote accesses before recognizing pattern

o must do this every time

23

0 0 1 2 2 4 2 2 2 1 2 2 2 0 2 3

PC

time

Node:

Hindsight Migrate policy
• insight:

o same code may always have the same access pattern

• solution:
o remember PCs that would have been good to migrate at

24

1. shared arrays[][];

2. for particleArray in arrays:

3. totalWeight = 0

4. for p in particleArray:

5. totalWeight += p.weight

6. histogram[totalWeight]++

Hindsight: motivation

25

PC 2 4 5 … 5 6.a 6.b 2 4 5 … 5 6.a 6.b

Node 0 3 3 3… 3 1 1 0 7 7 7… 7 4 4

Hindsight Migrate policy

PC 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5

Node 0 2 0 0 1 1 1 3 1 1 2 2 2 8 2 2 3 3

PC

Migration set

26

ask: would migrating at the first memory access in the window have been worth it?
if so, then add the PC to a migration set so the task can migrate next time

Hindsight Migrate policy

PC 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5

Node 0 2 0 0 1 1 1 3 1 1 2 2 2 8 2 2 3 3

PC

Migration set

27

Migration set

Hindsight Migrate policy

PC 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5

Node 0 2 0 0 1 1 1 3 1 1 2 2 2 8 2 2 3 3

PC

4

28

Migration set

Hindsight Migrate policy

PC 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5

Node 0 2 0 0 1 1 1 3 1 1 2 2 2 8 2 2 3 3

PC

4

29

Migration set

Hindsight Migrate policy

PC 0 1 2 3 4 5 6 7 8 9 4 5 6 7 8 9 4 5

Node 0 2 0 0 1 1 1 3 1 1 2 2 2 8 2 2 3 3

PC

4

migrate? yes

30

Outline
• Motivation

• Simplified system model and cost metric

• Online migration policies

• Evaluation

31

Evaluation
• potential for task migration over no migration?

• how much of this can predictors achieve?

• procedure:
o collect shared memory trace from program execution

o simulate it in our model and measure total cost

o run simulations with fixed task sizes

• benchmarks
o NPB IntSort

o PARSEC FluidAnimate

o SSCA#2 Betweenness centrality

32

Simulation
1. annotate application code to choose a

distribution for each shared memory

allocation

2. collect shared memory trace for an

execution

3. simulate:
i. at each memory access, ask the policy whether the task should

migrate

ii. add the cost of the chosen action

33

IntSort

34

FluidAnimate

35

Betweenness Centrality

36

Results summary
• simple online predictors achieved up to 60% of

optimal reduction in bytes transferred

• higher ratio of random access => lower potential for

task migration to reduce network usage

37

Conclusion

• In this work:
o task migration for reducing network usage, considered as a

prediction problem

• Take-away:
o migration predictors can make profitable choices based

on past memory accesses

o moving tasks to the data has the potential to improve

performance of parallel applications if there is locality to

exploit

38

39

A better cost metric
• message cost =

𝑠𝑖𝑧𝑒

𝐵𝑊(𝑠𝑖𝑧𝑒)

40

image: http://gasnet.cs.berkeley.edu/performance/

http://gasnet.cs.berkeley.edu/performance/

“Recoup rate”

41

Annotations
edgeData = (graphSDG *) malloc(sizeof(graphSDG));

track_memory(edgeData->startVertex, M, sizeof(VERT_T), BLOCK);

track_memory(edgeData->endVertex, M, sizeof(VERT_T), BLOCK);

track_memory(edgeData->weight, M, sizeof(WEIGHT_T), BLOCK);

BC = (double *) tm_malloc(N , sizeof(double), BLOCK);

elapsed_time = betweennessCentrality(G, BC);

tm_free(BC);

42

Instrumentation
• Use Pin to instrument the tracking functions and

memory accesses

• On tracking functions
o Update mapping of (address range) -> (allocation id)

• On each memory access
o the callback looks up the access

o If it is in a tracked region, save information about the access to trace file

43

