Do we need a crystal
ball for task migration?

Brandon {Myers,Holt}
University of Washington

bdmyers@cs.washington.edu

oy ot wa’b,;,
G

0
\‘\6\n J U’?/E’

Large data sets

(< w
S
sy oyl It

0 RS
.‘w..,.N‘&_.w 7 Q7
h"’ 4 { 7, / \AA ,
_ E‘ 7 ’ .
1\ A‘.‘QM.»,» >

(S \]

GARE

7 R
YV, X<

3 &\.v

.»A-._vv.kr, _<v i/ ,\A/r A

\ P&‘, /\ ‘

o A4
TSLYLL

A
4IQ

w.m%\‘ S

SO I
N&&&wwﬂ@ (
S
S A5

S ;‘M.VP»‘ 55
XN
.‘ v .\‘o\
A

N

)m&,

e
vaA..,Q ,
[\
o SR |

AR A 7)

o' .\. / v\.,‘
OSLENE A
,?.q N \‘ﬁr f'%" .

Yavr,
ww&w{t

/) » “ \V“v
4\\,(. %& Aﬂ
f_ Valy, %
—.Jrnh..ofq\r’.‘.u. .A

2

E
|
1

Spread data

o3

r
|

Spread data

o4

r
|

Resources:
compute, bandwidth

5

Task migration

move a running task to another node
purpose:

o Increase utilization or manage resources

o move task near tasks that share data
o move task closer to data it will access

COSsTs:

o moving local data required for the task to proceed
o Ccpu time to stop and resume a task

056

Prior work

task migration for:

o efficient use of resources
o load balancing

thread placement on cache coherent
systems using sharing information’

orediction for migration on NoC?

1. F. Song et al. Analytical modeling and optimization for affinity based thread scheduling on multicore systems.

CLUSTER '09.
2. Chao Wang et al. Packet Triggered Prediction Based Task Migration for Network-on-Chip. 20th Euromicro
International Conference on Parallel, Distributed and Network-based Processing, Feb ‘12

o/

Non-uniform cost to access
shared data

Exploit locality

node(nodel node2 node3

node 2

node 1

node 0

load (<nodel>)

REMOTE ,‘

10

node 0

REMOTEO

load (< >)

time

11

REMOTI@
<<
5%

Yy
K\ e
LOCAL REMOAE O LOCAL ‘
&
\Z A <
K s <
Wt & W
S
REMOTE REMOTE REMOTE
node 0

load (< >) load (< >) load (< >) load (< >)

time

node 2

node 1

node 0

REMOTE)‘

load (<nodel>)

=

Question

« consider task migration as a prediction problem
« can we predict when it will be more efficient

to move the data to the task,
or move the fask to the datae¢

L 14

Outline

Motivation

System model and cost meftric
Online migration predictors
Evaluation

®15

System model

o assumption: network is limifing resource

« simplification: flat network topology
o only distinguish between local and remote shared memory

e COSt metric: bytes transferred over the network

o others are possible; this is enough to capture network usage
o Nno fiming required

° ®16

Optimal task migration

What is the best possible cost for a given
executione

Find the schedule of migrations that
minimizes bytes transterred

Model excludes timing => schedules can be
calculated independently for each ftask

®1/

Optimal schedule

M/G
W S
&
W J€ < <<
b o\ &
We We & WG
REMOTE REMOTE REMOTE REMOTEO
node 0
load (<nodel>) load (<nodel>) load (<node2>) load (<nodel>)

18
time

Outline

Motivation

System model and cost metric
Online migration policies
Evaluation

®19

Online policies

predict whether a migration will give benefit
look at past access patterns

similar to prefetch prediction in computer
architecture

20

Migration predictors

history of past
memory

accesses \ e ™

current node > predictor > {stay,migrate}

target node / - -
estimate of

task size

o 2]

Stream Predictor policy

* Influenced by stream buffer* prefetch prediction

* migrate task when it has seen ‘enough’ references
to the same node in the immediate past

PC

y

Nodee 0012242 221222023

\ J

time

*N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. 17 ISCA '90, pages 364{373, New York, NY, USA, 1990. ACM.

02?2

Stream Predictor policy

» disadvantages of Stream:

o do extraremote accesses before recognizing pattern
o must do this every time

PC

y

Nodee 0012242 221222023

\ J

time

° ®23

Hindsight Migrate policy

* Insight:
o same code may always have the same access pattern

« solution:
o remember PCs that would have been good to migrate at

° 24

Hindsight: motivation

2. for particleArray in arrays:

3. totalWeight =

4. for p in particleArray:

5. totalWeight += p.weight

6. histogram[totalWeight |++

PC (2[4 |5 |.. |5 |6a|6b 6.a |6
Node [0|3 |3 |3..|3 |1 |1 4 |4

025

Hindsight Migrate policy

PC

PC 2 | 3 | 8

Node 0|20 |0 1
[Migration set\

026

Hindsight Migrate policy

PC

PC 3 |9

Node 0|20 |0 1
[Migration set\

27

Hindsight Migrate policy

PC 0l1(2/34]|5]6 | 7 NI 1|5 ¢ | 7N 1+ | 5

Node O|2|0|O0O |1 |1 |1T 3|1 |1 |2]|2|2|8[2|2]3]3

[Migration set\

O

- J

Hindsight Migrate policy

PC ol1(2]314]5] 6| 7 RCHEE

Node O|2|0|O0O |1 |1 |1T 3|1 |1 |2]|2|2|8[2|2]3]3

[Migration set\

O

- J

Hindsight Migrate policy

() ¥

PC 0111234 |5|6|7|8]|9

Node O|2(0|O0O |1 |1 |1 3|1 |1 |22 |2]|8|2|2]3]3

[Migration set\

: : migrate? yes

- J

Outline

Motivation

Simplified system model and cost metric
Online migration policies

Evaluation

03]

Evaluation

potential for task migration over no migratione
how much of this can predictors achieve®e

procedure:
o collect shared memory frace from program execution
o simulate it in our model and measure total cost
o run simulations with fixed task sizes

benchmarks

o NPB IntSort
o PARSEC FluidAnimate
o SSCA#2 Betweenness centrality

®32

Simulation

1. annotate application code 1o choose a
distribution for each shared memory
allocation

2. collect shared memory tfrace for an
execution

3. simulate:

I. ateach memory access, ask the policy whether the task should
migrate
ii. add the cost of the chosen action

° @33

IntSort

1.00

i
BN
J1

Bytes Transferred (normalized)
=
Z

/

— Never

— Optimal
Stream

— Hindsight

32

48

64

96

128 256 512 1024 2048 3072 4096
Task Size (bytes)

®34

Fluid Animate

3.0
— Never
2.5 :
— Optimal
Stream
2.0) .
- Hindsight
1.5

Bytes Transferred (normalized)

32 48 64 96 128 256 512 1024
Task Size (bytes)

35

Betweenness Centrality

3.0
- Never
29 = Optimal
Stream
2.0 . i
- Hindsight
1.5

Bytes Transferred (normalized)
o

32 48 64 96 128 256 512

Task Size (bytes)

® 36

Results summary

« simple online predictors achieved up to 60% of
optimal reduction in bytes transferred

* higherratio of random access => lower potential for
task migration to reduce network usage

®37

Conclusion

e |In this work:

o task migration for reducing network usage, considered as a
prediction problem

» Take-away:
o migration predictors can make profitable choices based
on past memory accesses

o moving tasks to the data has the potential to improve
performance of parallel applications if there is locality to
exploit

° @ 38

A better cost metric

Size
BW ((size)

message cost =

Cray X1 shmem
Flood Bandwidth (bulk)

—=— get_bulk
piat_nbi_balk
{ - get_nbi_bulk
—s— put_nb_bulk
—=— get_nb_bulk

1 10 100 1.000 10000 100,000 1,000,000 10,000,000
Message Size (bytes)

image: http://gasnet.cs.berkeley.edu/performance/

® 40

http://gasnet.cs.berkeley.edu/performance/

“Recoup rate”

1.00 Optimal
FA-Stream

0.75
o FA-Hindsight
é __ %

[

2 0,50
2 SSCA-Hindsight
ks

0.05 SSCA-Stream

0

32 48 64 96 128 256 512
Task Size (bytes)

0 4]

Annotations

edgeData = (graphSDG *) malloc(sizeof(graphSDG));
(edgeData->startVertex, M, sizeof(VERT_T),
(edgeData->endVertex, M, sizeof(VERT_T),
(edgeData->weight, M, sizeof(WEIGHT T),

BC = (double *) (N , sizeof(double),)
elapsed time = betweennessCentrality(G, BC);
(BC);

)<
s

)5

® 4?2

Instrumentation

* Use Pin to insfrument the tracking functions and
MeMmMory accesses

« On fracking functions
o Update mapping of (address range) -> (allocation id)

« On each memory access

o the callback looks up the access
o Ifitisin atracked region, save information about the access to frace file

® 43

