Do we need a crystal ball for task migration?

Brandon {Myers,Holt} University of Washington bdmyers@cs.washington.edu

Large data sets

Spread data

Spread data

Resources: compute, bandwidth

Task migration

- move a running task to another node
- purpose:
 - o increase utilization or manage resources
 - o move task near tasks that share data
 - move task closer to data it will access
- costs:
 - moving local data required for the task to proceed
 - cpu time to stop and resume a task

Prior work

- task migration for:
 - efficient use of resources
 - load balancing
- thread placement on cache coherent systems using sharing information¹
- prediction for migration on NoC²

- 1. F. Song et al. *Analytical modeling and optimization for affinity based thread scheduling on multicore systems.* CLUSTER '09.
- 2. Chao Wang et al. *Packet Triggered Prediction Based Task Migration for Network-on-Chip*. 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing, Feb '12

Non-uniform cost to access shared data

Exploit locality

load (<node1>)

time

10

Question

- consider task migration as a prediction problem
- can we predict when it will be more efficient to move the data to the task, or move the task to the data?

Outline

- Motivation
- System model and cost metric
- Online migration predictors
- Evaluation

System model

- assumption: network is limiting resource
- simplification: flat network topology
 - only distinguish between local and remote shared memory
- cost metric: bytes transferred over the network
 - o others are possible; this is enough to capture network usage
 - no timing required

Optimal task migration

- What is the best possible cost for a given execution?
- Find the schedule of migrations that minimizes bytes transferred
- Model excludes timing => schedules can be calculated independently for each task

Optimal schedule

Outline

- Motivation
- System model and cost metric
- Online migration policies
- Evaluation

Online policies

- predict whether a migration will give benefit
- look at past access patterns
- similar to prefetch prediction in computer architecture

Migration predictors

Stream Predictor policy

- influenced by stream buffer* prefetch prediction
- migrate task when it has seen 'enough' references to the same node in the immediate past

*N. P. Jouppi. *Improving direct-mapped cache performance by the addition of a small fully-associative cache and prefetch buffers*. 17th ISCA '90, pages 364{373, New York, NY, USA, 1990. ACM.

Stream Predictor policy

- disadvantages of Stream:
 - o do extra remote accesses before recognizing pattern
 - o must do this every time

time

- insight:
 - o same code may always have the same access pattern
- solution:
 - o remember PCs that would have been good to migrate at

Hindsight: motivation

1.	<pre>shared arrays[][];</pre>
2.	<pre>for particleArray in arrays:</pre>
3.	totalWeight = 0
4.	<pre>for p in particleArray:</pre>
5.	<pre>totalWeight += p.weight</pre>
6.	histogram[totalWeight]++

PC	2	4	5	•••	5	6.a	6.b	2	4	5		5	6.a	6.b
Node	0	3	3	3	3	1	1	0	7	7	7	7	4	4

Migration set

Migration set

migrate? yes

Outline

- Motivation
- Simplified system model and cost metric
- Online migration policies
- Evaluation

Evaluation

- potential for task migration over no migration?
- how much of this can predictors achieve?

• procedure:

- collect shared memory trace from program execution
- o simulate it in our model and measure total cost
- run simulations with fixed task sizes

benchmarks

- o NPB IntSort
- PARSEC FluidAnimate
- SSCA#2 Betweenness centrality

Simulation

- annotate application code to choose a distribution for each shared memory allocation
- 2. collect shared memory trace for an execution

3. simulate:

- i. at each memory access, ask the policy whether the task should migrate
- ii. add the cost of the chosen action

IntSort

FluidAnimate

Betweenness Centrality

Results summary

- simple online predictors achieved up to 60% of optimal reduction in bytes transferred
- higher ratio of random access => lower potential for task migration to reduce network usage

Conclusion

• In this work:

 task migration for reducing network usage, considered as a prediction problem

• Take-away:

- migration predictors can make profitable choices based on past memory accesses
- moving tasks to the data has the potential to improve performance of parallel applications if there is locality to exploit

A better cost metric

• message cost = $\frac{size}{BW(size)}$

image: http://gasnet.cs.berkeley.edu/performance/

Annotations

```
edgeData = (graphSDG *) malloc(sizeof(graphSDG));
track_memory(edgeData->startVertex, M, sizeof(VERT_T), BLOCK);
track_memory(edgeData->endVertex, M, sizeof(VERT_T), BLOCK);
track_memory(edgeData->weight, M, sizeof(WEIGHT_T), BLOCK);
BC = (double *) tm_malloc(N , sizeof(double), BLOCK);
elapsed_time = betweennessCentrality(G, BC);
tm_free(BC);
```

Instrumentation

- Use Pin to instrument the tracking functions and memory accesses
- On tracking functions
 - Update mapping of (address range) -> (allocation id)
- On each memory access
 - the callback looks up the access
 - o If it is in a tracked region, save information about the access to trace file