vCRIB: Virtual Cloud Rule Information Base

Masoud Moshref, Minlan Yu, Abhishek Sharma, Ramesh Govindan HotCloud 2012

Introduction

Datacenters use rules to implement management policies

- Access control
- Rate limiting
- Traffic measurement
- Traffic engineering

<u>2</u>

Introduction

Datacenters use rules to implement management policies

An action on a hypercube of flow space

Examples:

- Deny
- Normal
- Enqueue

Flow fields examples:

- Src IP / Dst IP
- Protocol
- Src Port / Dst Port

<u>3</u>

Introduction

Datacenters use rules to implement management policies

An action on a hypercube of flow space

R1=Accept

• SrcIP: 12.0.0.0/8

DstIP: 10.0.0.0/16

<u>4</u>

Current Practice

Rules are saved on predefined fixed machines

<u>5</u>

Current Practice

Rules are saved on predefined fixed machines

Machines have limited resources

2 Datacenters have different resource constraints

3 Multiple policies may compete for resources

<u>6</u>

vCRIB Goal: Flexible Rule Placement

Find the best feasible rule placement based on resource constraints

<u>7</u>

Future Datacenters will have many fine-grained rules

Regulating VM pair communication

- Access control (CloudPolice)
- Bandwidth allocation (Seawall)

100K - 1M

Per flow decision

 Flow measurement for traffic engineering (MicroTE, Hedera) 10 - 100M

VLAN per server

Traffic management (NetLord, Spain)

1M

<u>8</u>

Where to place rules? Hypervisors vs. Switches **Switch Hypervisor Performance** Software, Slow Hardware, Fast **Flexibility Complex rules OpenFlow rules External traffic, Entry point** Close to VMs Aggregate traffic **Limited CPU budget** # TCAM entries **Resources** Motivation Introduction Architecture **Evaluation** Conclusion

Rule Location Trade-off (Resource vs. Bandwidth Usage)

Storing rules at hypervisor incurs CPU processing overhead

<u>10</u>

Rule Location Trade-off (Resource vs. Bandwidth Usage)

Move the rule to ToR switch and forward traffic

<u>11</u>

Can we reduce Open vSwitch CPU usage?

Introduction

Motivation

Architecture

Evaluation

Conclusion

Can we reduce Open vSwitch CPU usage?

Handle same number of new flows with lower CPU budget

<u>13</u>

Rule Location Trade-off (Resource vs. Bandwidth Usage)

If rule memory is limited in one switch

<u>14</u>

Rule Location Trade-off (Resource vs. Bandwidth Usage)

Can tradeoff bandwidth within the switch fabric, in addition to trading-off bandwidth between hypervisors and switches

<u>15</u>

Our Approach: vCRIB, a Virtual Cloud Rule Information Base

Proactive rule placement abstraction layer

Allow operators to define fine-grained rules without worrying about placement

<u>16</u>

Our Approach: vCRIB, a Virtual Cloud Rule Information Base

Flexible rule placement at hypervisors and switches

Optimize performance given resource constraints

<u>17</u>

<u>18</u>

<u> 19</u>

Partitions rules to reduce overlapping rules dependency

<u>20</u>

Partitions rules to reduce overlapping rules dependency

Splitting rules covering multiple partitions causes inflation

<u>21</u>

vCRIB: Partitioning

Recursively cut partitions to create a BSP tree

Select a cut that

- balances two partitions
- creates fewest number of new rules

Smaller partitions

- are more flexible to place
- match fewer communicating VMs

Stop whenever a resource at a node is exhausted

<u>22</u>

Challenges: Placement Complexity

Constraints

- Functionality
- Machine resources

Goal

- Minimize traffic overhead
- Minimize delay
- Minimize cost of bandwidth usage vs. saved CPU

- Different partition sizes
- Different machine capacities
- Different traffic overhead for each partition location

Generalized Assignment Problem

vCRIB: Placement (Branch and Bound)

Select the largest unassigned partition

Place it on a switch/hypervisor

- Capable of handling its rules
 - **Functionality**
 - Resources
- Make minimum traffic overhead

24

vCRIB Architecture

<u>25</u>

Evaluation: Goal

Can partitioning algorithm achieve small partitions?

Can placement algorithm leverage resource availability to decrease traffic overhead?

Configuration

- 100 VMs per machine
- 10K flows (10KB) per machine
- ClassBench rules
- 1K rule capacity per switches

Evaluation: Partitioning

Change rule capacity to show the effect of different CPU budgets

Maximum size of partitions goes down as resources increase

27

Evaluation: Placement

Evaluation: Placement

<u>29</u>

Introduction Mo

Motivation

Architecture

Evaluation

Conclusion

Conclusion

vCRIB provides an abstraction layer for placement of rules in datacenters

Places the rules on both hypervisors and switches to achieve the best performance given the resource constraints

<u>30</u>

Future Work

Exploit performance model of hypervisors & switches

Online Algorithm adjusting to traffic changes

Replication in the partitioning and placement algorithm

<u>31</u>

Introduction Motivation Architecture Evaluation Conclusion

vCRIB: Virtual Cloud Rule Information Base

Masoud Moshref, Minlan Yu, Abhishek Sharma, Ramesh Govindan HotCloud 2012

