Mobile Computing: Challenges and Opportunities for Autonomy and Feedback

Ole J. Mengshoel
Carnegie Mellon University
Moffett Field, CA 94035
ole.mengshoel@sv.cmu.edu

Bob Iannucci
Carnegie Mellon University
Moffett Field, CA 94035
bob@sv.cmu.edu

Abe Ishihara
Carnegie Mellon University
Moffett Field, CA 94035
abe.ishihara@sv.cmu.edu
CMU in Silicon Valley

- Established 2002
- Significant growth in the past 10 years
Background

- Mobile computing as a disruptive force
- First wave of mobile computing:
 - Voice was king
- Second wave of mobile computing:
 - Computer is king
 - *Platform thinking* – similar to desktop and laptop
 - Challenges the inherited mobile systems infrastructure
- Challenge: Develop the next-generation mobile computing infrastructure
Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustness</td>
<td>Wireless characteristics are inherently variable</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>Growing demand implies growing load</td>
</tr>
<tr>
<td>Power</td>
<td>Physics imposes hard limits</td>
</tr>
<tr>
<td>App Development</td>
<td>Distributed computing introduces complexity</td>
</tr>
</tbody>
</table>

Disclaimers:
- These four challenges are not independent
- Other challenges exist
- Some challenges are well-known, and now re-emerging

Carnegie Mellon University Silicon Valley
Impact of Platform Thinking: Robustness Challenge

- Robustness challenge: In wireless networks, the physical medium is generally
 - dynamic,
 - variable in reliability, and
 - devices can and do move.
Impact of Platform Thinking: Responsiveness Challenge

- **Responsiveness challenge**: With the growth in mobile consumption of streaming media
 - desire to balance competing needs of different traffic flows against fixed resources
 - revived interest in mechanisms to externally control an otherwise static network (e.g., SDN) and policies that enforce rational resource allocation
 - *real-time resource allocation* is a necessity, but current operator practice treats it as a static problem
Impact of Platform Thinking: Power Challenge

- **Power challenge**: The competitive nature of mobile app marketplaces taxes the power usage of mobile phones
 - rapid evolution of on-phone computing performance and app capabilities
 - mobile phone must operate at or below the so-called ``three watt limit,” else it gets too hot to handle
 - minimize the time a mobile device is tethered for charging
Impact of Platform Thinking: App Development Challenge

- **App development challenge**: mobile apps often consist of developer's code + some cloud service
 - IP packets traveling mobile-to-cloud or mobile-to-mobile transit extensive wireless edge and core networks to reach their destinations: Latency is often a problem
 - few developers know how to statically divide an app for power optimization
 - depending on partitioning, power-cost of computing and communication will change, possibly drastically
 - inherently unknown nature of app's input-dependent behavior makes static partitioning unrealistic
What’s Next?

• Apps expose desired network resource allocation (bandwidth, maximum latency):
 • Network conducts auctions to set prices and priorities
 • Feedback loop is closed when the apps receive results of the auction and modify their requests accordingly
 • Network operator maximizes revenue
• Apps and networks jointly do power management:
 • App instances are running on millions of devices, they provide meta-data for state of wireless connections
 • Learn network-dependent power behavior: Correlate power usage with signal strength across many apps
 • Video streaming app: weak signal triggers use of a codec that minimizes retransmissions, minimizing wasted power
Power Challenge

- Power management: the most pressing issue in mobile app creation and mobility computing?
- Power usage can be:
 - measured across different, concurrent app instances
 - these measurements can then be correlated with network measurements and models
- Machine learning and system identification can be then be done used for feedback control:
 - setpoint would be power consumption
 - the control actions would be to dynamically migrate parts of an app between the device and the cloud
- Compared to previous research [Chen 2012, Thiagarajan 2012], we propose to automatically partition a broader class of apps
Responsiveness Challenge

 Desired Performance

 Adaptive Control System

 MAX PROCESSES

 Kill/Suspend Process Procedure

 Main Process: Bayesian Diagnostics
 - Detect faults in system

 Algorithmic Modifications

 Diagnostics Results

 Computational Time

 Other Metrics

 Background Processes

 Operating System

 Hardware
 - CPU, memory
 - cache, hard-drive

 User Uncertainty

 Feedback Control Signals

 Carnegie Mellon University
 Silicon Valley
Software-Defined, Open Mobile Networks Test Bed

Revolutionary cross-layer approach to networks: Integrate end-user computing capability and open doors for innovation.
Conclusions & Next Steps

• Second wave of mobile computing:
 • *Platform thinking* – similar to desktop and laptop
• Challenge: Develop the next-generation mobile computing infrastructure
 • Robustness
 • Responsiveness
 • Power
 • App Development
• Mobile Computing Testbed at CMU Silicon Valley
 • We’re looking for collaborators