Analyzing Resiliency of Smart Grid Communication Architectures under Cyber Attacks

Anas Al Majali, Arun Viswanathan and Clifford Neuman
USC/Information Sciences Institute
Part I

Quick Overview
Power Grid

Utility

Communication Path

Power Grid

Electric Flow

Customers
Smart Grid

Power Grid

Communication Path

Utility

Bidirectional communication

AMI: Advanced Metering Infrastructure

RF mesh: Radio Frequency mesh

Electric Flow

Customers
RF Mesh

Utility

Collector

WAN
Objective

• Our objective is to experimentally evaluate the operational resiliency of the smart grid in terms of the higher level functions on which it depends and the communication architecture that underlies those higher level functions, under cyber attack on the communication architecture.
Resiliency

Our objective is to experimentally evaluate the operational resiliency of the smart grid in terms of the higher level functions on which it depends and the communication architecture that underlies those higher level functions, under cyber attack on the communication architecture.

• Operational Resiliency is the capability of a system to fulfill its mission in a timely manner, even in the presence of attacks or failures.
Methodology

Our approach consists of:

1. Modeling an RF mesh communication network deployed in a typical smart grid region using ns-2.
2. Simulating the behavior of higher-level smart grid functions.
3. Analyzing the performance of those functions under a DoS attack on the communication infrastructure.
Key Finding

It requires an attacker to compromise only a small fraction of the meters in a typical RF mesh region to disrupt the communication resilience within the region.
Part II

Detailed Discussion
Outline

• **Part II**
 – Objective
 – Resiliency
 – Methodology
 – Results
 – Lessons Learned
 – Conclusion
Outline

• Part II
 – Objective
 – Resiliency
 – Methodology
 – Results
 – Lessons Learned
 – Conclusion
Resiliency (revisited)

• Our objective is to experimentally evaluate the operational resiliency of the smart grid in terms of the higher level functions on which it depends and the communication architecture that underlies those higher level functions, under cyber attack on the communication architecture.

• Operational Resiliency is the capability of a system to fulfill its mission in a timely manner, even in the presence of attacks or failures.
RF Mesh (revisited)
Higher-level Functions

• Our objective is to experimentally evaluate the operational resiliency of the smart grid in terms of the higher level functions on which it depends and the communication architecture that underlies those higher level functions, under cyber attack on the communication architecture.
Functional View of the Smart Grid Layers

AMI Communication Layer
Combination of wireless, cellular and wired Networks providing communication services between utilities and consumers

Physical Power Grid
Delivers power to the end consumers

- **Smart Metering**
 Automated readings and remote meter management

- **Demand Response**
 Dynamic load Management

- **Outage Management**
 Automated outage detection

- **Electric Vehicles**
 Automated (dis)charging based on dynamic pricing signals

- **Cyber Security**
 Protects the smart grid against cyber threats and failures
Resiliency of Smart Grid Functions

• **Remote Metering is resilient if:**
 – Data from some percentage of the meters is always delivered to the utility within a bounded time.

• **Demand Response is resilient if:**
 – Required kWh of load is always curtailed within a bounded time.

• **Cyber Security component is resilient if:**
 – It always detects and responds to security threats before performance and security requirements of other functions are violated.
Measuring Communication Resiliency

- **Packet Delivery Ratio (PDR)**
 - Defined as the number of packets successfully received by a receiver over the expected number of packets.

- **Average End-to-end Delay**
 - Defined as the average time taken for packets to be transmitted from the sending application to the receiving application.

- **Average Packet Hop Count**
 - Defined as the average number of intermediate nodes through which the packets sent by a sender are routed. In the case of an RF mesh-based network, the average hop count measures the number of meters traversed by a packet before it reaches the receiver.

- **Successful DR Requests Ratio**
 - Defined as the number of DR requests that successfully receive a reply over the total DR requests that were issued.
Outline

• Part II
 – Objective
 – Resiliency
 – Methodology
 – Results
 – Lessons Learned
 – Conclusion
Methodology (revisited)

Our approach consists of:

1. Modeling an RF mesh communication network deployed in a typical smart grid region using ns-2.
2. Simulating the behavior of higher-level smart grid functions.
3. Analyzing the performance of those functions under a DoS attack on the communication infrastructure.
Experiment Topology
(Meter Distribution)
Experiment Topology
(Meter Distribution)

Collector: Responsible for relaying messages between the RF mesh and the Utility through the WAN
Experiment Configuration

- **Meter Configuration**: using ns-2 we configured meter nodes with parameters derived from specification of a real smart meter.

- **Propagation Model**: used the shadowing propagation model to simulate an outdoor shadowed urban area.
Experiment Procedure

• What parameters need to be configured?
 – Ad-hoc routing protocol
 • AODV: Ad-hoc On-Demand Distance Vector.
 • DSR: Dynamic Source Routing.
 • DSDV: Destination Sequenced Distance Vector.

 – Number of meters
 • 150 – 350.

 – Sending interval of the meters
 • 60, 420, 900, 1800 seconds.
Simulation of Smart Grid Functions

Meter

Smart Metering: Automated, periodic meter reads -1000 bytes every X s.

Demand Response: DR load curtailment signals. Collector-meter-collector

Collector: Responsible for conveying messages between the RF mesh and the Utility through the WAN.
DoS Attack

• There are many types of attacks that can be performed on the RF mesh
 – Spoofing meter reads.
 – Manipulating meter reads.
 – DoS attack.
DoS Attack

DoS attack parameters:

1. Percentage of compromised meters.
2. Sending interval of the compromised meters.

Compromised meters generate DoS attack by simultaneously sending low bit rate traffic to the collector.
Outline

• Part II
 – Objective
 – Resiliency
 – Methodology
 – Results
 – Lessons Learned
 – Conclusion
Baseline Configuration

• We identify an acceptable configuration with:
 – Routing Protocol: AODV
 – Number of meters: 250
 – Sending interval: 900 s

• Metrics values for this configuration:
 – PDR: 97.07%
 – Average packet end-to-end delay: 2.86 s
 – Average hop count: 2.28
 – Successful DR Requests Ratio: 100%
Experiment under DoS Attack

(a) Reprogrammed sending interval (s)

(b) Packet delivery ratio (%)

(c) Successful DR request ratio (%)

Smart Metering: missing meter reads

Demand Response: missing DR signals

(d) Reprogrammed sending interval (s)
Experiment under DoS Attack

(a) Packet delivery ratio (%)
- Reprogrammed sending interval (s)

(b) Average packet delay (seconds)
- Reprogrammed sending interval (s)

(c) Average packet hop count
- Reprogrammed sending interval (s)

(d) Successful DR request ratio (%)
- Reprogrammed sending interval (s)
Key Finding

It requires an attacker to compromise only a small fraction of the meters in a typical RF mesh region to disrupt the communication resilience within the region.
Outline

• Part II
 – Objective
 – Resiliency
 – Methodology
 – Results
 – Lessons Learned
 – Conclusion
Lessons Learned

Cyber Security

Need to compromise small fraction of meters to generate DoS attack.

<table>
<thead>
<tr>
<th>Function</th>
<th>Lessons Learned</th>
<th>Consequences</th>
</tr>
</thead>
</table>
| Smart Metering | Missing meter reads | • Billing
| | | • Load monitoring and forecasting |
| Demand Response | Reduced and delayed (request-response) | Disrupting load management |
| | pairs | |
Overall Operational Resiliency

• Consequences on the overall operational resiliency of the smart grid.
 – Utilities loose money if billing is disrupted for long time.
 – Inability to control end devices reduces “reserves”.

Recommendation:

Need to focus on the resiliency of the smart grid communication architecture
Further Discussion
What wasn't addressed?

• Other communication architectures like cellular.

• Other functions can be studied if there is enough information to model them like outage management.
Experimentation Platform

<table>
<thead>
<tr>
<th></th>
<th>ns-2 (Simulation)</th>
<th>DETER (Emulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Wireless</td>
<td>✔</td>
<td>✔ (SWOON*: Wireless Emulation)</td>
</tr>
<tr>
<td>Scale (hundreds of nodes)</td>
<td>✔</td>
<td>✖ (for SWOON not DETER)</td>
</tr>
<tr>
<td>Real nodes (for future work)</td>
<td>✖</td>
<td>✔ (Real hardware and software)</td>
</tr>
</tbody>
</table>

SWOON (Secure Wireless Overlay Observation Network)
What new directions does this paper open?

• Simulations can help us generate traffic traces for emulating aggregate behavior of an RF mesh network on a testbed like DETER.

• This is important in a nascent domain like smart grid where there is a lack of real world traces.
What new directions does this paper open? (Cont.)

• This type of analysis can be used to evaluate the resiliency of critical smart grid functions like DR.

• The resiliency of those functions can have an important effect on the future architecture of the smart grid.
What could have been done differently?

• The RF mesh model.
 – Routing protocols.
 – Collectors and routers.
Conclusion

• We evaluated the operational resiliency of the smart grid in terms of the higher level functions on which it depends and the communication architecture that underlies those higher level functions, under cyber attack on the communication architecture.

• We quantitatively demonstrated that it requires an attacker to compromise only a small fraction of meters to violate the resiliency of the communication architecture and consequently the overall resiliency of the smart grid.