
Remote Core Locking���
���

Migrating Critical-Section Execution to Improve the
Performance of Multithreaded Applications���

���
to appear at USENIX ATC’12���

���
���
	

Jean-Pierre Lozi	

LIP6/INRIA���

	

	

Florian David	

LIP6/INRIA	

	

	

Gaël Thomas	

LIP6/INRIA	

	

	

Julia Lawall	

LIP6/INRIA	

	

	

Gilles Muller	

LIP6/INRIA	

1	

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 5 10 15 20 22

Sp
ee

du
p

Number of cores

Memcached/GET Memcached/SET

Problem: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (GET/SET requests):	

 	

2	
Experiments run on a 48-core, “magny-cours” x86 AMD machine	

H
ig

he
r i

s
be

tte
r"

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 5 10 15 20 22

Sp
ee

du
p

Number of cores

Memcached/GET Memcached/SET

Problem: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (GET/SET requests):	

 	

2	

Collapses!

Experiments run on a 48-core, “magny-cours” x86 AMD machine	

H
ig

he
r i

s
be

tte
r"

Why?	

•  Critical sections = bottleneck on multicore architectures	

•  High contention ⇒ lock acquisition is costly	

–  More cores ⇒ more contention	

0%"

20%"

40%"

60%"

80%"

100%"

1" 4" 8" 16" 22" 32" 48"

SPLASH-2/Radiosity"
SPLASH-2/Raytrace"
Phoenix2/LG"
Phoenix2/SM"
Phoenix2/MM"
Memcached/GET"
Memcached/SET"
Berkeley DB/OS"
Berkeley DB/SL"

Number of cores"

%
 o

f t
im

e
sp

en
t i

n
cr

iti
ca

l s
ec

tio
n*

3	

* Including lock acquisition time"

 100 1000 10000 100000 1e+06
 1000

 10000

 100000

 1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay (cycles)

•  Better resistance to contention	

•  No need to redesign the application	

•  Custom microbenchmark to compare locks:	

	

 	

Solution: designing better locks	

4	

Lo
w

er
 is

 b
et

te
r"

ç Higher contention" Lower contention è"

MCS è"
[Mellor-Crummey91] è"

CAS spinlock è"

Critical sections access 5 cache lines each"

 100 1000 10000 100000 1e+06
 1000

 10000

 100000

 1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay (cycles)

•  Better resistance to contention	

•  No need to redesign the application	

•  Custom microbenchmark to compare locks:	

	

 	

Improvement!

Solution: designing better locks	

4	

Lo
w

er
 is

 b
et

te
r"

ç Higher contention" Lower contention è"

MCS è"
[Mellor-Crummey91] è"

CAS spinlock è"

Critical sections access 5 cache lines each"

Objective: remove atomic instructions and reduce cache misses	

•  Execute contended critical sections on a dedicated server core	

•  Very fast transfer of control, no sync on global variable	

–  Faster than lock acquisitions when contention is high	

•  Shared data remains on server core ⇒ fewer cache misses 	

Remote Core Locking	

5	

…	

Objective: remove atomic instructions and reduce cache misses	

•  Execute contended critical sections on a dedicated server core	

•  Very fast transfer of control, no sync on global variable	

–  Faster than lock acquisitions when contention is high	

•  Shared data remains on server core ⇒ fewer cache misses 	

Remote Core Locking	

5	

…	

Objective: remove atomic instructions and reduce cache misses	

•  Execute contended critical sections on a dedicated server core	

•  Very fast transfer of control, no sync on global variable	

–  Faster than lock acquisitions when contention is high	

•  Shared data remains on server core ⇒ fewer cache misses 	

Remote Core Locking	

5	

…	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

Implementation: general idea	

6	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&lock4!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

Server executes critical section"cache	
miss	

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL! Server executes critical section"cache	
miss	

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	 Client resumes execution"

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

•  Implementation based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields 	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

6	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

Total = 3 cache misses only!
No atomic instruction (CAS)!!

 100 1000 10000 100000 1e+06
 1000

 10000

 100000

 1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay (cycles)

Performance	

7	

CAS spinlock è"

MCS è"

RCL è"

ç Higher contention" Lower contention è"

Lo
w

er
 is

 b
et

te
r"

 100 1000 10000 100000 1e+06
 1000

 10000

 100000

 1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay (cycles)

Performance	

7	

CAS spinlock è"

MCS è"

RCL è"

ç Higher contention" Lower contention è"

Lo
w

er
 is

 b
et

te
r"

Improvement!

 100 1000 10000 100000 1e+06
 1000

 10000

 100000

 1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay (cycles)

CAS spinlock è"

MCS è"

RCL è"

POSIX è"
Flat Combining è"

[Hendler10] è"
"

ç Higher contention" Lower contention è"

Lo
w

er
 is

 b
et

te
r"

Performance	

7	

Using RCL in legacy applications (1)	

8	

RCL Runtime :
	

•  Handles blocking in critical sections (I/O, page faults…)	

–  Pool of servicing threads on server	

–  Able to service other (independent) critical sections when blocked	

	

•  Makes it possible to use condition variables (cond/wait)	

–  Used by ~50% of applications that use POSIX locks in Debian 6.0.3	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

9	

Using RCL in legacy applications (2)	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

9	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

9	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

9	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

	

 	

	

•  Tool to reengineer applications automatically	

–  Possible to pick which locks use RCL	

–  To avoid false serialization:���
Possible to pick which server(s) handle which lock(s).	

9	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

	

 	

	

•  Tool to reengineer applications automatically	

–  Possible to pick which locks use RCL	

–  To avoid false serialization:���
Possible to pick which server(s) handle which lock(s).	

10	

Using RCL in legacy applications (2)	

 0
 20
 40
 60
 80

 100

 100 1000 10000 100000 1e+06

%
 o

f t
im

e
in

 C
S

Delay (cycles)

All other locks have collapsed (60000 cycles): 70%

Collapse of POSIX (120000 cycles): 20%

% of time in CS

Profiling:
•  Custom profiler to find good candidates	

•  Metric: time spent in critical sections	

•  Running the profiler on the microbenchmark shows that:	

–  If time spent in CS > 20%, RCL is more efficient than POSIX locks	

–  If time spent in CS > 70%, RCL is more efficient than all other locks	

	

	

11	

Using RCL in legacy applications (3)	

Experiments	

•  Benchmarks (highly contended ⇒ 70% time spent in CS):	

–  SPLASH-2 benchmark suite	

–  3 applications out of 10 are highly contended	

–  Phoenix2 benchmark suite	

–  3 applications out of 7 are highly contended	

–  Memcached	

– Highly contended with the GET workload	

–  Berkeley DB / TPC-C 	

– Highly contended with 2 workloads (Order Status, Stock Level)	

12	

 0

 1

 2

 3

 4

 5

Memcached
Set

Raytrace
Balls4

String
Match

Linear
Regression

Memcached
Get

Radiosity Raytrace
Car

Matrix
Multiply

 0

 1

 2

 3

 4

 5

Be
st

 p
er

fo
rm

an
ce

 re
la

tiv
e

to
 b

es
t P

O
SI

X
pe

rfo
rm

an
ce POSIX

x

1
.
9
:
3

x
2
5
.
8
:
3
5

x
1
2
.
8
:
3
5

x

4
.
7
:
2
2

x

4
.
8
:
1
0

x
1
0
.
2
:
1
5

x

3
.
6
:
5

x

3
.
6
:
2
1

 CAS spinlock

x

2
.
6
:
7

x
2
4
.
4
:
3
1

x
1
0
.
0
:
2
6

x

4
.
1
:
1
1

x

8
.
8
:
1
0

x
1
0
.
5
:
1
3

x

4
.
5
:
6

x

3
.
5
:
8

Flat Combining

x
3
0
.
2
:
4
8

x
1
5
.
7
:
4
1

x

6
.
6
:
2
1

x
1
6
.
1
:
3
6

x

5
.
4
:
1
6

x

5
.
1
:
1
8

MCS

x

2
.
5
:
1
1

x
3
4
.
1
:
4
8

x
1
5
.
9
:
4
2

x

6
.
0
:
2
2

x
1
0
.
3
:
1
6

x
1
5
.
9
:
3
2

x

4
.
8
:
1
1

x

5
.
0
:
2
9

RCL

x

5
.
0
:
2
2
/
4

x
3
4
.
5
:
4
8
/
4
0

x
1
5
.
4
:
3
5
/
2
3

x

9
.
5
:
2
2
/
7

x
1
0
.
6
:
1
5
/
1
2

x
2
3
.
6
:
4
6
/
1
8

x
1
2
.
2
:
3
1
/
7

x

5
.
8
:
2
0
/
7

•  Better performance and scalability when time in CS > 70%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 55%  
(many DCMs)"

40%" 63%" 83%" 84%" 84%" 88%" 93%"

H
ig

he
r

is
be

tt
er
	

Evaluation results (1)	

13	

 0

 1

 2

 3

 4

 5

Memcached
Set

Raytrace
Balls4

String
Match

Linear
Regression

Memcached
Get

Radiosity Raytrace
Car

Matrix
Multiply

 0

 1

 2

 3

 4

 5

Be
st

 p
er

fo
rm

an
ce

 re
la

tiv
e

to
 b

es
t P

O
SI

X
pe

rfo
rm

an
ce POSIX

x

1
.
9
:
3

x
2
5
.
8
:
3
5

x
1
2
.
8
:
3
5

x

4
.
7
:
2
2

x

4
.
8
:
1
0

x
1
0
.
2
:
1
5

x

3
.
6
:
5

x

3
.
6
:
2
1

 CAS spinlock

x

2
.
6
:
7

x
2
4
.
4
:
3
1

x
1
0
.
0
:
2
6

x

4
.
1
:
1
1

x

8
.
8
:
1
0

x
1
0
.
5
:
1
3

x

4
.
5
:
6

x

3
.
5
:
8

Flat Combining

x
3
0
.
2
:
4
8

x
1
5
.
7
:
4
1

x

6
.
6
:
2
1

x
1
6
.
1
:
3
6

x

5
.
4
:
1
6

x

5
.
1
:
1
8

MCS

x

2
.
5
:
1
1

x
3
4
.
1
:
4
8

x
1
5
.
9
:
4
2

x

6
.
0
:
2
2

x
1
0
.
3
:
1
6

x
1
5
.
9
:
3
2

x

4
.
8
:
1
1

x

5
.
0
:
2
9

RCL

x

5
.
0
:
2
2
/
4

x
3
4
.
5
:
4
8
/
4
0

x
1
5
.
4
:
3
5
/
2
3

x

9
.
5
:
2
2
/
7

x
1
0
.
6
:
1
5
/
1
2

x
2
3
.
6
:
4
6
/
1
8

x
1
2
.
2
:
3
1
/
7

x

5
.
8
:
2
0
/
7

•  Better performance and scalability when time in CS > 70%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 55%  
(many DCMs)"

40%" 63%" 83%" 84%" 84%" 88%" 93%"

H
ig

he
r

is
be

tt
er
	

Evaluation results (1)	

13	

 0

 1

 2

 3

 4

 5

Memcached
Set

Raytrace
Balls4

String
Match

Linear
Regression

Memcached
Get

Radiosity Raytrace
Car

Matrix
Multiply

 0

 1

 2

 3

 4

 5

Be
st

 p
er

fo
rm

an
ce

 re
la

tiv
e

to
 b

es
t P

O
SI

X
pe

rfo
rm

an
ce POSIX

x

1
.
9
:
3

x
2
5
.
8
:
3
5

x
1
2
.
8
:
3
5

x

4
.
7
:
2
2

x

4
.
8
:
1
0

x
1
0
.
2
:
1
5

x

3
.
6
:
5

x

3
.
6
:
2
1

 CAS spinlock

x

2
.
6
:
7

x
2
4
.
4
:
3
1

x
1
0
.
0
:
2
6

x

4
.
1
:
1
1

x

8
.
8
:
1
0

x
1
0
.
5
:
1
3

x

4
.
5
:
6

x

3
.
5
:
8

Flat Combining

x
3
0
.
2
:
4
8

x
1
5
.
7
:
4
1

x

6
.
6
:
2
1

x
1
6
.
1
:
3
6

x

5
.
4
:
1
6

x

5
.
1
:
1
8

MCS

x

2
.
5
:
1
1

x
3
4
.
1
:
4
8

x
1
5
.
9
:
4
2

x

6
.
0
:
2
2

x
1
0
.
3
:
1
6

x
1
5
.
9
:
3
2

x

4
.
8
:
1
1

x

5
.
0
:
2
9

RCL

x

5
.
0
:
2
2
/
4

x
3
4
.
5
:
4
8
/
4
0

x
1
5
.
4
:
3
5
/
2
3

x

9
.
5
:
2
2
/
7

x
1
0
.
6
:
1
5
/
1
2

x
2
3
.
6
:
4
6
/
1
8

x
1
2
.
2
:
3
1
/
7

x

5
.
8
:
2
0
/
7

•  Better performance and scalability when time in CS > 70%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 55%  
(many DCMs)"

40%" 63%" 83%" 84%" 84%" 88%" 93%"

H
ig

he
r

is
be

tt
er
	

Evaluation results (1)	

13	

 0

 2

 4

 6

 8

 10

Order Status Stock Level
 0

 2

 4

 6

 8

 10

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 b
as

e
ap

pl
ic

at
io

n
(1

00
 c

lie
nt

s)

Base
POSIX

CAS spinlock

Flat Combining
 MCS-TP

RCL

x

1
.
4

x

1
.
4

x

0
.
1

x

0
.
2

x

1
.
0

x

1
.
6

x

0
.
9

x

1
.
4

x

4
.
3
/
1
0

x

7
.
7
/
1
0

•  Berkeley DB with TPC-C (100 clients)	

•  Large gains, % in CS underestimated	

H
ig

he
r

is
be

tt
er
	

Evaluation results (2)	

14	
53%" 56%"% in CS:!

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 5 10 15 20 22

Sp
ee

du
p

Number of cores

POSIX
CAS spinlock

MCS
RCL

•  Memcached, SET requests:	

when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(a) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(b) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(c) Radiosity

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

posix spinlock mcs flat rcl

Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:

9 2011/10/21

RCL Scalability (1)	

15	

H
ig

he
r

is
be

tt
er
	

 1

 10

 100

 1000

20 40 48 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

)

Number of clients (1 client = 1 thread)

Base
POSIX

CAS spinlock

 Flat Combining
MCS

 MCS-TP

RCL

RCL Scalability (2)	

H
ig

he
r

is
be

tt
er
	

•  Berkeley DB / TPC-C, Stock Level requests:	

16	

 1

 10

 100

 1000

20 40 48 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

)

Number of clients (1 client = 1 thread)

MCS RCL

RCL Scalability (2)	

Collapse!

H
ig

he
r

is
be

tt
er
	

•  Berkeley DB / TPC-C, Stock Level requests:	

16	

 1

 10

 100

 1000

20 40 48 60 80 100 120 140 160 180 200

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

)

Number of clients (1 client = 1 thread)

MCS-TP MCS RCL

RCL Scalability (2)	

Collapse!

H
ig

he
r

is
be

tt
er
	

•  Berkeley DB / TPC-C, Stock Level requests:	

16	

•  RCL reduces lock acquisition time and improves data locality	

•  Profiler to detect when RCL can be useful	

•  Tool to ease the transformation of legacy code	

•  Future work: adaptive RCL runtime	

–  Dynamically switch between locking strategies	

–  Load balancing between servers	

Conclusion	

17	

