Eiger: Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd*
Michael J. Freedman*
Michael Kaminsky†
David G. Andersen‡

*Princeton, †Intel Labs, ‡CMU
Geo-Replicated Storage
is the backend of massive websites

“Halting is Undecidable”
Storage Dimensions

Shard Data Across Many Nodes

A-F

G-L

M-R

S-Z

“Halting is Undecidable”
Storage Dimensions

Shard Data Across Many Nodes

Data Geo-Replicated In Multiple Datacenters
Sharded, Geo-Replicated Storage
Strong Consistency or Low Latency

Low Latency
- Improves user experience
- Correlates with revenue

Fundamentally in Conflict
[LiptonSandberg88, AttiyaWelch94]

Strong Consistency
- Obey user expectations
- Easier for programmers
Strong Consistency or Low Latency

Megastore [SIGMOD ‘08]
Spanner [OSDI ‘12] →
Gemini [OSDI ‘12] →
Walter [SOSP ‘11] →

Dynamo [SOSP ‘07]
COPS [SOSP ‘11] ←

Eiger

Obey user expectations
Easier for programmers

Causal+ Consistency
Rich Data Model
Read-only Txns
Write-only Txns
Eiger Ensures Low Latency

Keep All Ops Local
Causal+ Consistency Across DCs

- If A happens before B
 - Everyone sees A before B

- Obeys user expectations

- Simplifies programming
Causal For Column Families

- Operations update/read many columns
- Range query columns concurrent w/ deletes
- Counter columns
- See paper for details
Viewing Data Consistently Is Hard

Asynchronous requests + distributed data = ??????
Read-Only Transactions

• Logical time gives a global view of data store
 – Clocks on all nodes, carried with all messages

• Insight: Store is consistent at all logical times
Read-Only Transactions

• Extract consistent up-to-date view of data
 – Across many servers

• Challenges
 – Scalability
 • Decentralized algorithm
 – Guaranteed low latency
 • At most 2 parallel rounds of local reads
 • No locks, no blocking
 – High performance
 • Normal case: 1 round of reads
Read-Only Transactions

- Round 1: Optimistic parallel reads
- Calculate *effective time*
- Round 2: Parallel read_at_times
Transaction Intuition

- **Read-only transactions**: Read from a single logical time
- **Write-only transactions**: Appear at a single logical time

Bonus: Works for Linearizability
Eiger Provides

- Low latency
- Rich data model
- Causal+ consistency
- Read-only transactions
- Write-only transactions

But what does all this cost?

Does it scale?
Eiger Implementation

• Fork of open-source Cassandra

• +5K lines of Java to Cassandra’s 75K

• Code Available:
 – https://github.com/wlloyd/eiger
Evaluation

• Cost of stronger consistency & semantics
 – Vs. eventually-consistent Cassandra
 – Overhead for real (Facebook) workload
 – Overhead for state-space of workloads

• Scalability
Experimental Setup

Local Datacenter (Stanford)

Remote DC (UW)

Replication
Facebook Workload Results

6.6% Overhead
Eiger Scales

Facebook Workload

Scales out

384 Machines!
Improving Low-Latency Storage

<table>
<thead>
<tr>
<th>Feature</th>
<th>COPS</th>
<th>Eiger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data model</td>
<td>Key-Value</td>
<td>Column-Family</td>
</tr>
<tr>
<td>Read-only Txns</td>
<td>Causal stores</td>
<td>All stores</td>
</tr>
<tr>
<td>Write-only Txns</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance</td>
<td>Good</td>
<td>Great</td>
</tr>
<tr>
<td>DC Failure</td>
<td>Throughput degradation</td>
<td>Resilient</td>
</tr>
</tbody>
</table>
Eiger

• Low-latency geo-replicated storage
 – Causal+ for column families
 – Read-only transactions
 – Write-only transactions

• Demonstrated in working system
 – Competitive with eventual
 – Scales to large clusters
 – https://github.com/wlloyd/eiger