hello!
gentle constructive rant
debugging large scale systems using events
understanding
system behaviour
app → events → column store

{ k: v }

analytical queries

SELECT ...
GROUP BY

users

😊
app

you are here

→

events

{k: v}

→

column store

→

analytical queries

SELECT ...

GROUP BY

→

users

😊
Software is becoming increasingly complex
Figure 3.15: Storage hierarchy of a WSC.

3.5.2 QUANTIFYING LATENCY, BANDWIDTH, AND CAPACITY

Figure 3.16 attempts to quantify the latency, bandwidth, and capacity characteristics of a WSC. For illustration we assume a system with 5,000 servers, each with 256 GB of DRAM, one 4 TB SSD, and eight 10 TB disk drives. Each group of 40 servers is connected through a 40-Gbps link to a rack-level switch that has an additional 10-Gbps uplink bandwidth per machine for connecting the rack to the cluster-level switch (an oversubscription factor of four). Network latency numbers assume a TCP/IP transport, and networking bandwidth values assume that each server behind an oversubscribed set of uplinks is using its fair share of the available cluster-level bandwidth. For disks, we show typical commodity disk drive (SATA) latencies and transfer rates.

The Datacenter as a Computer, Barroso et al
logs vs metrics: a false dichotomy
10.2.3.4 - - [1/Jan/1970:18:32:20 +0000] "GET / HTTP/1.1" 200 5324 ":" "curl/7.54.0" ":"
we can derive metrics from log streams
$ cat access.log
 | grep ... | awk ...
 | sort | uniq -c
{
 time = "1970-01-01T18:32:20"
 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 request_dur_ms = 325
 request_bytes = 2456
 response_bytes = 5324
}
structured logs
summary events
canonical log lines
arbitrarily wide data blobs
events
A metric is an aggregation of events.
why do we aggregate?
count
p50
p99
max
histogram
SELECT ...
GROUP BY

users

analytical queries

column store

{ k: v }

events

app

😊

you are here
prometheus and the problem with metrics
"it's slow"
p99(request_latency) > 1000ms
300 requests were slow
... which ones?!
group by
Most monitoring questions are **top-k**.
🏆 top traffic by IP address
🏆 top resource usage by customer
🏆 top latency by country
🏆 top error count by host
🏆 top request size by client
how many users are impacted?
SELECT user_id, COUNT(*)
FROM requests
WHERE request_latency >= 1000
GROUP BY user_id
metrics will not tell you this
cardinality
http_requests_total{status=200} 10
http_requests_total{status=201}
http_requests_total{status=301}
http_requests_total{status=304}
...
http_requests_total{status=503}
user_id 10k
ip address space = 2^{32}
4 billion possible values
kubectl get pods 100
build_id 100
the curse of dimensionality
{
 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"
 user_id = 30032
 partition_id = 31
 build_id = "9045e1"
 customer_plan = "platinum"
 endpoint = "tweet_detail"
}
<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>200</td>
</tr>
<tr>
<td>method</td>
<td>"GET"</td>
</tr>
<tr>
<td>path</td>
<td>...</td>
</tr>
<tr>
<td>host</td>
<td>"i-123456af"</td>
</tr>
<tr>
<td>zone</td>
<td>"eu-central-1a"</td>
</tr>
<tr>
<td>client_ip</td>
<td>"10.2.3.4"</td>
</tr>
<tr>
<td>user_agent</td>
<td>"curl/7.5.3"</td>
</tr>
<tr>
<td>client_country</td>
<td>"de"</td>
</tr>
<tr>
<td>user_id</td>
<td>30032</td>
</tr>
<tr>
<td>partition_id</td>
<td>31</td>
</tr>
<tr>
<td>build_id</td>
<td>"9045e1"</td>
</tr>
<tr>
<td>customer_plan</td>
<td>"platinum"</td>
</tr>
<tr>
<td>endpoint</td>
<td>"tweet_detail"</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
10 \times 5 \times 300 \times 20 \times 5 &= 172'800'000'000 \\
1k \times 300 \times 20 \times 1k \times 32 &= \\
10 \times 3 \times 20 &= \\
\end{align*}
\]

\[
= 172'800'000'000'
\]
app → events → column store

{ k: v }

you are here

SELECT ...
GROUP BY

analytical queries

users

😊
recording events
void do_rpc() {
 ...
 record_event({
 x: x,
 y: y,
 status: status,
 user: user,
 version: version,
 ...
 })
}
{
 time = "1970-01-01T18:32:20"
 status = 200
 method = "GET"
 path = "..."
 host = "i-123456af"
 region = "eu-central-1"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"
 kernel = "5.0.0-1018-aws"
 user_id = 30032
 tweet_id = 2297111098
 partition_id = 31
 build_id = "9045e1"
 request_id = "f2a3bdc4"
 customer_plan = "platinum"
 feature_blub = true
 cache = "miss"
 endpoint = "tweet_detail"
 request_dur_ms = 325
 db_dur_ms = 5
 db_pool_dur_ms = 3
 db_query_count = 63
 cache_dur_ms = 2
 svc_a_dur_ms = 32
 svc_b_dur_ms = 90
 request_bytes = 2456
 response_bytes = 5324
}

{

time = "1970-01-01T18:32:20"
status = 200
method = "GET"
path = ...
host = "i-123456af"
region = "eu-central-1"
zone = "eu-central-1a"
client_ip = "10.2.3.4"
user_agent = "curl/7.54.0"
client_country = "de"
kernel = "5.0.0-1018-aws"
}
{
 "user_id" = 30032,
 "tweet_id" = 2297111098,
 "partition_id" = 31,
 "build_id" = "9045e1",
 "request_id" = "f2a3bdc4",
 "customer_plan" = "platinum",
 "feature_blub" = true,
 "cache" = "miss",
 "endpoint" = "tweet_detail"
}
{
 request_dur_ms = 325
 db_dur_ms = 5
 db_pool_dur_ms = 3
 db_query_count = 63
 cache_dur_ms = 2
 svc_a_dur_ms = 32
 svc_b_dur_ms = 90
 request_bytes = 2456
 response_bytes = 5324
}
traces vs events: a false dichotomy
we can derive events from traces
Canopy: An End-to-End Performance Tracing And Analysis System

Jonathan Kaldor† Jonathan Mace* Michal Bejda† Edison Gao† Wiktor Kuropatwa†
Joe O’Neill† Kian Win Ong† Bill Schaller† Pingjia Shan† Brendan Viscomi†
Vinod Venkataraman† Kaushik Veeraraghavan† Yee Jiun Song†

†Facebook *Brown University
stick those events in kafka
app → events → column store

{ k: v } → analytical queries

SELECT ...
GROUP BY

you are here

users

😊
Columnar Storage changed my life
2. WORKLOADS AND SOFTWARE INFRASTRUCTURE

Resource replication that has already been provisioned for fault-tolerance, thereby achieving small additional overheads for existing systems. They predict that tolerant techniques will become more invaluable in the next decade as we build ever more formidable online web services.

2.6.5 LATENCY NUMBERS THAT ENGINEERS SHOULD KNOW

Table 2.3: Latency numbers that every WSC engineer should know. (Updated version of table from [Dea09].)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 cache reference</td>
<td>1.5 ns</td>
</tr>
<tr>
<td>L2 cache reference</td>
<td>5 ns</td>
</tr>
<tr>
<td>Branch misprediction</td>
<td>6 ns</td>
</tr>
<tr>
<td>Uncontended mutex lock/unlock</td>
<td>20 ns</td>
</tr>
<tr>
<td>L3 cache reference</td>
<td>25 ns</td>
</tr>
<tr>
<td>Main memory reference</td>
<td>100 ns</td>
</tr>
<tr>
<td>Decompress 1 KB with Snappy [Sna]</td>
<td>500 ns</td>
</tr>
<tr>
<td>“Far memory”/Fast NVM reference</td>
<td>1,000 ns (1us)</td>
</tr>
<tr>
<td>Compress 1 KB with Snappy [Sna]</td>
<td>2,000 ns (2us)</td>
</tr>
<tr>
<td>Read 1 MB sequentially from memory</td>
<td>12,000 ns (12 us)</td>
</tr>
<tr>
<td>SSD Random Read</td>
<td>100,000 ns (100 us)</td>
</tr>
<tr>
<td>Read 1 MB bytes sequentially from SSD</td>
<td>500,000 ns (500 us)</td>
</tr>
<tr>
<td>Read 1 MB sequentially from 10Gbps network</td>
<td>1,000,000 ns (1 ms)</td>
</tr>
<tr>
<td>Read 1 MB sequentially from disk</td>
<td>10,000,000 ns (10 ms)</td>
</tr>
<tr>
<td>Disk seek</td>
<td>10,000,000 ns (10 ms)</td>
</tr>
<tr>
<td>Send packet California→Netherlands→California</td>
<td>150,000,000 ns (150 ms)</td>
</tr>
</tbody>
</table>

Recently, cloud computing has emerged as an important model for replacing traditional enterprise computing systems with one that is layered on top of WSCs. The proliferation of high speed inter- The Datacenter as a Computer, Barroso et al.
• 1TB Hitachi Deskstar 7K1000

• disk seek time = 14ms

• transfer rate = 69MB/s

• 62.5 billion rows (= 1TB / 16 bytes)

• 28 years (= 62.5 billion rows * 14 ms/row / 32 × 10^9 ms/year)
• 1TB Hitachi Deskstar 7K1000

• transfer rate = 69MB/s

• 4 hours (= 1,000,000MB / 69MB/s / 3600 s/hour)
- **SSD**

 - transfer rate = 1GB/s

 - 15 minutes (= 1.000GB / 1GB/s / 60 s/min)
10GB
Dremel: Interactive Analysis of Web-Scale Datasets, Google
10 GB / 8 bytes per data point

= 1.3 billion events
time-based partitioning
dynamic sampling
it's lossy, but that's fine
vectorized processing
sequential scans
×
columnar layout
×
time-based partitioning
×
compression / sampling
×
vectorized processing
×
sharding
putting it all together
The diagram illustrates the flow of data from an app to a column store, through events, and analytical queries that produce users.

- The app generates events.
- Events are transformed into a dictionary format: \{ k: v \}.
- This dictionary is stored in a column store.
- The column store processes analytical queries, which select and group by users.
we need more of this in the monitoring space!
SELECT user_id, COUNT(*)
FROM requests
WHERE status >= 500
GROUP BY user_id
ORDER BY COUNT(*) DESC
LIMIT 10
top-k

cardinality

events
Dremel: Interactive Analysis of Web-Scale Datasets

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, Theo Vassilakis
Google, Inc.
{melnik,andrey,jlong,gromer,shiva,mtolton,teov}@google.com

Scuba: Diving into Data at Facebook

Lior Abraham*
Vinayak Borkar
Daniel Merl
Subbu Subramanian

John Allen
Bhuwan Chopra
Josh Metzler
Janet L. Wiener

Oleksandr Barykin
Ciprian Gerea
David Reiss
Okay Zed

Facebook, Inc. Menlo Park, CA
• Dremel: Interactive Analysis of Web-Scale Datasets from Google, 2010

• Scuba: Diving into Data at Facebook from Facebook, 2016

• Canopy: An End-to-End Performance Tracing And Analysis System from Facebook, 2017

• Look at Your Data by John Rauser, Velocity 2011

• Observability for Emerging Infra by Charity Majors, Strange Loop 2017

• Why We Built Our Own Distributed Column Store by Sam Stokes, Strange Loop 2017

• The Design and Implementation of Modern Column-Oriented Database Systems by Abadi et al, 2013

• Designing Data-Intensive Applications by Martin Kleppmann, 2017

• Monitoring in the time of Cloud Native by Cindy Sridharan, 2017

• Logs vs. metrics: a false dichotomy by Nick Stenning, 2019

• Using Canonical Log Lines for Online Visibility by Brandur Leach, 2016

• The Datacenter as a Computer: Designing Warehouse-Scale Machines by Barroso et al, 2018