
wide event analytics
@igorwhilefalse

hello!

@igorwhilefalse

gentle constructive rant

debugging large scale
systems using events

understanding
system behaviour

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

you are here

software is becoming
increasingly complex

72 3. WSC HARDWARE BUILDING BLOCKS

D/FD/F
D/FD/F

D/FD/F

DRAM
DRAMDRAM

L1$ + L2$ L1$ + L2$
LAST-LEVEL CACHE

L1$ + L2$ L1$ + L2$
LAST-LEVEL CACHE

LOCAL DRAM

RACK SWITCH

DATACENTER FABRIC

DISK/FL
ASH

DRAMDRAM
DRAMDRAM D/FD/F

D/FD/F
D/FD/F

D/FD/F

DRAM
DRAMDRAM

DRAMDRAM
DRAMDRAM D/FD/F

P P P P
DRAMONE SERVER

DRAM: 256GB, 100ns, 150GB/s
DISK: 80TB, 10ms, 800MB/s
FLASH: 4TB, 100us, 3GB/s

DRAMLOCAL RACK (40 SERVERS)
DRAM: 10TB, 20us, 5GB/s
DISK: 3.2PB, 10ms, 5GB/s
FLASH: 160TB, 120us, 5GB/s

DRAMCLUSTER (125 RACKS)
DRAM: 1.28PB, 50us, 1.2GB/s
DISK: 400PB, 10ms, 1.2GB/s
FLASH: 20PB, 150us, 1.2GB/s

Figure 3.15: Storage hierarchy of a WSC.

3.5.2 QUANTIFYING LATENCY, BANDWIDTH, AND CAPACITY
Figure 3.16 attempts to quantify the latency, bandwidth, and capacity characteristics of a WSC. For
illustration we assume a system with 5,000 servers, each with 256 GB of DRAM, one 4 TB SSD,
and eight 10 TB disk drives. Each group of 40 servers is connected through a 40-Gbps link to a
rack-level switch that has an additional 10-Gbps uplink bandwidth per machine for connecting
the rack to the cluster-level switch (an oversubscription factor of four). Network latency numbers
assume a TCP/IP transport, and networking bandwidth values assume that each server behind an
oversubscribed set of uplinks is using its fair share of the available cluster-level bandwidth. For
disks, we show typical commodity disk drive (SATA) latencies and transfer rates.

The Datacenter as a Computer, Barroso et al

Jaeger, Uber

Philippe M Desveaux

Alexandre Baron

logs vs metrics:
a false dichotomy

Nick Stenning

10.2.3.4 - - [1/Jan/1970:18:32:20
+0000] "GET / HTTP/1.1" 200 5324
"-" "curl/7.54.0" "-"

Honeycomb

we can derive metrics
from log streams

$ cat access.log
 | grep ... | awk ...
 | sort | uniq -c

{
 time = "1970-01-01T18:32:20"

 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"

 request_dur_ms = 325
 request_bytes = 2456
 response_bytes = 5324
}

structured logs
summary events
canonical log lines
arbitrarily wide data blobs

~
events

~

a metric is an aggregation
of events

why do we aggregate?

count
p50
p99
max

histogram

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

you are here

prometheus and the
problem with metrics

domaso

"it's slow"

Honeycomb

p99(request_latency)
> 1000ms

300 requests were slow 
... which ones?!

group by

most monitoring questions are

✨top-k🥇

🏆 top traffic by IP address

🏆 top resource usage by customer

🏆 top latency by country

🏆 top error count by host

🏆 top request size by client

how many users
are impacted?

 SELECT user_id, COUNT(*)
 FROM requests
 WHERE request_latency >= 1000
GROUP BY user_id

metrics will not
tell you this

✨ cardinality 🌙

Honeycomb

Honeycomb

http_requests_total{status=200}

http_requests_total{status=201}

http_requests_total{status=301}

http_requests_total{status=304}

...

http_requests_total{status=503}

10

user_id 10k

ip address space = 2^32 
4 billion possible values

100k

kubectl get pods 100

build_id 100

the curse of
dimensionality

{
 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"

 user_id = 30032
 partition_id = 31  
 build_id = "9045e1"
 customer_plan = "platinum"
 endpoint = "tweet_detail"
}

{
 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"

 user_id = 30032
 partition_id = 31  
 build_id = "9045e1"
 customer_plan = "platinum"
 endpoint = "tweet_detail"
}

10

5

300

20

5

1k

300

20

1k

32

10

3

20

10 5 300 20 5✖ ✖ ✖ ✖

= 172'800'000'000
000'000'000

1k 300 20 1k 32

10 3 20

✖ ✖ ✖ ✖

✖ ✖

✖

✖

💥

TheUjulala

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

you are here

recording events

{
 time = "1970-01-01T18:32:20"

 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 region = "eu-central-1"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"
 kernel = "5.0.0-1018-aws"

 user_id = 30032
 tweet_id = 2297111098
 partition_id = 31  
 build_id = "9045e1"  
 request_id = "f2a3bdc4"
 customer_plan = "platinum"
 feature_blub = true
 cache = "miss"
 endpoint = "tweet_detail"

 request_dur_ms = 325
 db_dur_ms = 5
 db_pool_dur_ms = 3
 db_query_count = 63
 cache_dur_ms = 2
 svc_a_dur_ms = 32
 svc_b_dur_ms = 90
 request_bytes = 2456
 response_bytes = 5324
}

{
 time = "1970-01-01T18:32:20"

 status = 200
 method = "GET"
 path = ...
 host = "i-123456af"
 region = "eu-central-1"
 zone = "eu-central-1a"
 client_ip = "10.2.3.4"
 user_agent = "curl/7.54.0"
 client_country = "de"
 kernel = "5.0.0-1018-aws"
}

{
 user_id = 30032
 tweet_id = 2297111098
 partition_id = 31 
 build_id = "9045e1" 
 request_id = "f2a3bdc4"
 customer_plan = "platinum"
 feature_blub = true
 cache = "miss"
 endpoint = "tweet_detail"
}

{
 request_dur_ms = 325
 db_dur_ms = 5
 db_pool_dur_ms = 3
 db_query_count = 63
 cache_dur_ms = 2
 svc_a_dur_ms = 32
 svc_b_dur_ms = 90
 request_bytes = 2456
 response_bytes = 5324
}

Jaeger, Uber

traces vs events:
a false dichotomy

we can derive events
from traces

Canopy SOSP ’17, October 28, 2017, Shanghai, China

�

�

�

TraceID
�

Engineers
Facebook
Components
Requests
Instrumentation
APIs
Canopy Events

Key

(a) Engineers instrument Facebook components using a range of
di�erent Canopy instrumentation APIs (��). At runtime, requests
traverse components (��) and propagate aTraceID (��);when requests
trigger instrumentation, Canopy generates and emits events (��).

�

EventAggregation�

�

ModelConstruction�

Feature Extraction�

QueryEvaluation��

QueryResults,Visualizations,Graphs, etc.

RawTrace
Events

�

Trace
Datasets��

��

Trace
Model

Canopy
Engineers

Feature
Lambdas

Performance
Engineers

Dataset
Queries

Any Facebook
Engineer

(b) Canopy’s tailer aggregates events (��), constructs model-based
traces (��), evaluates user-supplied feature extraction functions (��),
and pipes output to user-defined datasets (���).Users subsequently run
queries, view dashboards and explore datasets (���, ���).

Figure �: Overview of how (a) developers instrument systems to
generate events and (b) Canopy processes trace events (cf. §�.�).

�.� CanopyOverview
Figure � illustrates Canopy’s architecture.We refer to the num-
bers in the �gure in our description. To begin, Facebook engi-
neers instrument system components to record performance
information (��). Canopy provides several instrumentation
APIs to capture di�erent aspects of performance, e.g. counters,
logs, causal dependencies, etc.

At runtime, incoming requests to Facebookwill traverse the
instrumented system components (��). To relate performance
events to requests, Canopy assigns each request a unique Tra-
ceID and propagates it along the request’s end-to-end execu-
tion path (��), including across process boundaries and when
requests fan out and in.When instrumentation is triggered,
Canopy generates events capturing performance information
and causality with respect to prior events during execution (��).
Internally, all instrumentation APIsmap down to a common
underlying event representation.

Canopy routes events to the tailer, its sharded backend pro-
cessing pipeline.We shard by TraceID, so that events for each
trace route to the same tailer instance. Upon receiving them,

the tailer aggregates events in memory (��) and persists them
to storage (��). Once the tailer determines all events have been
received for a request, they are queued for processing (��). Pro-
cessing begins bymapping events to a tracemodel (��), which
provides a single high-level representation for performance
traces that uni�es the di�erent instrumentation models and
APIs used by Facebook developers. Next, Canopy evaluates
user-supplied feature lambdas (��) which extract or compute
interesting features from each modeled trace. Users bundle
their feature lambdas with a dataset con�guration that speci-
�es predicates for �ltering unwanted traces and directions for
where to output the extracted features (���); typically, datasets
are piped to Scuba [�], an in-memory database designed for
performance data.

Finally, Facebook engineers can query datasets directly and
view visualizations and dashboards backed by the datasets
(���). In addition to user-con�gured datasets, Canopy provides
several shared datasets and visualizations containing common
high-level features, plus tools for drilling down into the under-
lying traces if deeper inspection is needed (���).
�.� Instrumentation APIs
Instrumentation broadly comprises three tasks: �) propagating
the TraceID alongside requests as they execute, to associate per-
formance data generated by different components; �) recording
the request structure, e.g.where andwhen it executes, causality
between threads and components, and network communica-
tion; and �) capturing useful performance data, e.g. logging
statements, performance counters, and stack traces.

Each Canopy instrumentation API performs a slice of these
tasks depending on what best aligns with the component
or programming language in question. Canopy’s low-level li-
braries in several languages allow users to manually log events
and pass TraceIDs between threads; howevermost APIs layer
higher-level concepts on top of these. For instance, in most
Facebook components, causality tracking is handled automat-
ically as part of a RequestContext interface that is solely re-
sponsible for passing aroundmetadata like TraceIDs. Instead
of events, some higher-level libraries have constructs for an-
notating segments of processing, such as try-with-resources
statements in Java:

try (Block b = Canopy.block(“Doing some work”)) { . . . }

Conversely, Facebook’s web servers are heavily continuation
based, so Canopy does not expose these concepts because it is
difficult tomanually track causality through asynchronous calls
and accurately attribute performance counters to work done.
Instead, Canopy’s PHP instrumentation library only supports
noting points in time and wrapping functions to profile, e.g.:

Canopy()->inform(‘Evicting Cache Entry’);
Canopy()->measure(‘Evicting’, $evictFunction);

Canopy, Facebook

stick those events in kafka

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

you are here

columnar storage
changed my life

40 2. WORKLOADS AND SOFTWARE INFRASTRUCTURE

pose often take advantage of resource replication that has already been provisioned for fault-toler-
ance, thereby achieving small additional overheads for existing systems. They predict that tail tol-
erant techniques will become more invaluable in the next decade as we build ever more formidable
online web services.

2.6.5 LATENCY NUMBERS THAT ENGINEERS SHOULD KNOW
This section is inspired by Jeff Dean’s summary of key latency numbers that engineers should know
[Dea09]. These rough operation latencies help engineers reason about throughput, latency, and ca-
pacity within a first-order approximation. We have updated the numbers here to reflect technology
and hardware changes in WSC.

Table 2.3: Latency numbers that every WSC engineer should know. (Updated
version of table from [Dea09].)
Operation Time
L1 cache reference 1.5 ns
L2 cache reference 5 ns
Branch misprediction 6 ns
Uncontended mutex lock/unlock 20 ns
L3 cache reference 25 ns
Main memory reference 100 ns
Decompress 1 KB with Snappy [Sna] 500 ns
“Far memory”/Fast NVM reference 1,000 ns (1us)
Compress 1 KB with Snappy [Sna] 2,000 ns (2us)
Read 1 MB sequentially from memory 12,000 ns (12 us)
SSD Random Read 100,000 ns (100 us)
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us)
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms)
Read 1 MB sequentially from disk 10,000,000 ns (10 ms)
Disk seek 10,000,000 ns (10 ms)
Send packet California→Netherlands→California 150,000,000 ns (150 ms)

2.7 CLOUD COMPUTING
Recently, cloud computing has emerged as an important model for replacing traditional enterprise
computing systems with one that is layered on top of WSCs. The proliferation of high speed inter-

The Datacenter as a Computer, Barroso et al

• 1TB Hitachi Deskstar 7K1000

• disk seek time = 14ms

• transfer rate = 69MB/s

• 62.5 billion rows (= 1TB / 16 bytes)

• 28 years (= 62.5 billion rows * 14 ms/row / 32×10^9
ms/year)

The Trouble with Point Queries, Bradley C. Kuszmaul

• 1TB Hitachi Deskstar 7K1000

• transfer rate = 69MB/s

• 4 hours (= 1.000.000MB / 69MB/s / 3600 s/hour)

• SSD

• transfer rate = 1GB/s

• 15 minutes (= 1.000GB / 1GB/s / 60 s/min)

10GB

Dremel: Interactive Analysis of Web-Scale Datasets, Google

10 GB / 8 bytes per data point

= 1.3 billion
events

status
200
200
200
200
404
200
200
200
404
200

status
4 * 200

404
3 * 200

404
200

time-based partitioning

dynamic sampling

it's lossy, but that's fine

vectorized processing

Scuba: Diving into Data at Facebook, Facebook

sequential scans
✖

columnar layout
✖

time-based partitioning
✖

compression / sampling
✖

vectorized processing
✖

sharding

putting it all
together

events column store

analytical
queries

{ k: v }

SELECT ...
GROUP BY

users

😊

app

we need more of this
in the monitoring space!

 SELECT user_id, COUNT(*)
 FROM requests
 WHERE status >= 500
GROUP BY user_id
ORDER BY COUNT(*) DESC
 LIMIT 10

✨ top-k 🥇

✨ cardinality 🌙

✨ events 🎆

• Dremel: Interactive Analysis of Web-Scale Datasets from Google, 2010

• Scuba: Diving into Data at Facebook from Facebook, 2016

• Canopy: An End-to-End Performance Tracing And Analysis System from Facebook, 2017

• Look at Your Data by John Rauser, Velocity 2011

• Observability for Emerging Infra by Charity Majors, Strange Loop 2017

• Why We Built Our Own Distributed Column Store by Sam Stokes, Strange Loop 2017

• The Design and Implementation of Modern Column-Oriented Database Systems by Abadi et al, 2013

• Designing Data-Intensive Applications by Martin Kleppmann, 2017

• Monitoring in the time of Cloud Native by Cindy Sridharan, 2017

• Logs vs. metrics: a false dichotomy by Nick Stenning, 2019

• Using Canonical Log Lines for Online Visibility by Brandur Leach, 2016

• The Datacenter as a Computer: Designing Warehouse-Scale Machines by Barroso et al, 2018

@igorwhilefalsehi@igor.io

