
wide event analytics
@igorwhilefalse



hello!



@igorwhilefalse



gentle constructive rant



debugging large scale 
systems using events



understanding 
system behaviour



events column store

analytical
queries

{ k: v }

SELECT ... 
GROUP BY

users

😊

app



events column store

analytical
queries

{ k: v }

SELECT ... 
GROUP BY

users

😊

app

you are here



software is becoming 
increasingly complex



72 3. WSC HARDWARE BUILDING BLOCKS
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Figure 3.15: Storage hierarchy of a WSC. 

3.5.2 QUANTIFYING LATENCY, BANDWIDTH, AND CAPACITY
Figure 3.16 attempts to quantify the latency, bandwidth, and capacity characteristics of a WSC. For 
illustration we assume a system with 5,000 servers, each with 256 GB of DRAM, one 4 TB SSD, 
and eight 10 TB disk drives. Each group of 40 servers is connected through a 40-Gbps link to a 
rack-level switch that has an additional 10-Gbps uplink bandwidth per machine for connecting 
the rack to the cluster-level switch (an oversubscription factor of four). Network latency numbers 
assume a TCP/IP transport, and networking bandwidth values assume that each server behind an 
oversubscribed set of uplinks is using its fair share of the available cluster-level bandwidth. For 
disks, we show typical commodity disk drive (SATA) latencies and transfer rates.

The Datacenter as a Computer, Barroso et al
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logs vs metrics: 
a false dichotomy

Nick Stenning



10.2.3.4 - - [1/Jan/1970:18:32:20 
+0000] "GET / HTTP/1.1" 200 5324 
"-" "curl/7.54.0" "-"



Honeycomb



we can derive metrics 
from log streams



$ cat access.log 
    | grep ... | awk ... 
    | sort | uniq -c



{ 
  time           = "1970-01-01T18:32:20" 

  status         = 200 
  method         = "GET" 
  path           = ... 
  host           = "i-123456af" 
  client_ip      = "10.2.3.4" 
  user_agent     = "curl/7.54.0" 

  request_dur_ms = 325 
  request_bytes  = 2456 
  response_bytes = 5324 
}



structured logs 
summary events 
canonical log lines 
arbitrarily wide data blobs



~ 
events 

~



a metric is an aggregation 
of events



why do we aggregate?
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prometheus and the 
problem with metrics





domaso



"it's slow"



Honeycomb



p99(request_latency) 
> 1000ms



300 requests were slow 
... which ones?!



group by



most monitoring questions are 

✨top-k🥇



🏆  top traffic by IP address 

🏆  top resource usage by customer 

🏆  top latency by country 

🏆  top error count by host 

🏆  top request size by client



how many users 
are impacted?



  SELECT user_id, COUNT(*) 
    FROM requests 
   WHERE request_latency >= 1000 
GROUP BY user_id



metrics will not 
tell you this



✨ cardinality 🌙



Honeycomb



Honeycomb



http_requests_total{status=200} 

http_requests_total{status=201} 

http_requests_total{status=301} 

http_requests_total{status=304} 

... 

http_requests_total{status=503}

10



user_id 10k



ip address space = 2^32 
4 billion possible values

100k



kubectl get pods 100



build_id 100



the curse of 
dimensionality



{ 
  status         = 200 
  method         = "GET" 
  path           = ... 
  host           = "i-123456af" 
  zone           = "eu-central-1a" 
  client_ip      = "10.2.3.4" 
  user_agent     = "curl/7.54.0" 
  client_country = "de" 

  user_id        = 30032 
  partition_id   = 31  
  build_id       = "9045e1" 
  customer_plan  = "platinum" 
  endpoint       = "tweet_detail" 
}



{ 
  status         = 200 
  method         = "GET" 
  path           = ... 
  host           = "i-123456af" 
  zone           = "eu-central-1a" 
  client_ip      = "10.2.3.4" 
  user_agent     = "curl/7.54.0" 
  client_country = "de" 

  user_id        = 30032 
  partition_id   = 31  
  build_id       = "9045e1" 
  customer_plan  = "platinum" 
  endpoint       = "tweet_detail" 
}

10

5

300

20

5

1k

300

20

1k

32

10

3

20



10 5 300 20 5✖ ✖ ✖ ✖

= 172'800'000'000 
000'000'000

1k 300 20 1k 32

10 3 20

✖ ✖ ✖ ✖

✖ ✖

✖

✖

💥



TheUjulala



events column store

analytical
queries

{ k: v }

SELECT ... 
GROUP BY

users

😊

app

you are here



recording events





{ 
  time           = "1970-01-01T18:32:20" 

  status         = 200 
  method         = "GET" 
  path           = ... 
  host           = "i-123456af" 
  region         = "eu-central-1" 
  zone           = "eu-central-1a" 
  client_ip      = "10.2.3.4" 
  user_agent     = "curl/7.54.0" 
  client_country = "de" 
  kernel         = "5.0.0-1018-aws" 

  user_id        = 30032 
  tweet_id       = 2297111098 
  partition_id   = 31  
  build_id       = "9045e1"  
  request_id     = "f2a3bdc4" 
  customer_plan  = "platinum" 
  feature_blub   = true 
  cache          = "miss" 
  endpoint       = "tweet_detail" 

  request_dur_ms = 325 
  db_dur_ms      = 5 
  db_pool_dur_ms = 3 
  db_query_count = 63 
  cache_dur_ms   = 2 
  svc_a_dur_ms   = 32 
  svc_b_dur_ms   = 90 
  request_bytes  = 2456 
  response_bytes = 5324 
}



{ 
  time           = "1970-01-01T18:32:20" 

  status         = 200 
  method         = "GET" 
  path           = ... 
  host           = "i-123456af" 
  region         = "eu-central-1" 
  zone           = "eu-central-1a" 
  client_ip      = "10.2.3.4" 
  user_agent     = "curl/7.54.0" 
  client_country = "de" 
  kernel         = "5.0.0-1018-aws" 
}



{ 
  user_id        = 30032 
  tweet_id       = 2297111098 
  partition_id   = 31 
  build_id       = "9045e1" 
  request_id     = "f2a3bdc4" 
  customer_plan  = "platinum" 
  feature_blub   = true 
  cache          = "miss" 
  endpoint       = "tweet_detail" 
}



{ 
  request_dur_ms = 325 
  db_dur_ms      = 5 
  db_pool_dur_ms = 3 
  db_query_count = 63 
  cache_dur_ms   = 2 
  svc_a_dur_ms   = 32 
  svc_b_dur_ms   = 90 
  request_bytes  = 2456 
  response_bytes = 5324 
}
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traces vs events: 
a false dichotomy



we can derive events 
from traces



Canopy SOSP ’17, October 28, 2017, Shanghai, China

�

�

�

TraceID
�

Engineers
Facebook
Components
Requests
Instrumentation
APIs
Canopy Events

Key

(a) Engineers instrument Facebook components using a range of
di�erent Canopy instrumentation APIs ( ��). At runtime, requests
traverse components ( ��) and propagate aTraceID ( ��);when requests
trigger instrumentation, Canopy generates and emits events ( ��).
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(b) Canopy’s tailer aggregates events ( ��), constructs model-based
traces ( ��), evaluates user-supplied feature extraction functions ( ��),
and pipes output to user-defined datasets ( ���).Users subsequently run
queries, view dashboards and explore datasets ( ���, ���).

Figure �: Overview of how (a) developers instrument systems to
generate events and (b) Canopy processes trace events (cf. §�.�).

�.� CanopyOverview
Figure � illustrates Canopy’s architecture.We refer to the num-
bers in the �gure in our description. To begin, Facebook engi-
neers instrument system components to record performance
information ( ��). Canopy provides several instrumentation
APIs to capture di�erent aspects of performance, e.g. counters,
logs, causal dependencies, etc.

At runtime, incoming requests to Facebookwill traverse the
instrumented system components ( ��). To relate performance
events to requests, Canopy assigns each request a unique Tra-
ceID and propagates it along the request’s end-to-end execu-
tion path ( ��), including across process boundaries and when
requests fan out and in.When instrumentation is triggered,
Canopy generates events capturing performance information
and causality with respect to prior events during execution ( ��).
Internally, all instrumentation APIsmap down to a common
underlying event representation.

Canopy routes events to the tailer, its sharded backend pro-
cessing pipeline.We shard by TraceID, so that events for each
trace route to the same tailer instance. Upon receiving them,

the tailer aggregates events in memory ( ��) and persists them
to storage ( ��). Once the tailer determines all events have been
received for a request, they are queued for processing ( ��). Pro-
cessing begins bymapping events to a tracemodel ( ��), which
provides a single high-level representation for performance
traces that uni�es the di�erent instrumentation models and
APIs used by Facebook developers. Next, Canopy evaluates
user-supplied feature lambdas ( ��) which extract or compute
interesting features from each modeled trace. Users bundle
their feature lambdas with a dataset con�guration that speci-
�es predicates for �ltering unwanted traces and directions for
where to output the extracted features ( ���); typically, datasets
are piped to Scuba [�], an in-memory database designed for
performance data.

Finally, Facebook engineers can query datasets directly and
view visualizations and dashboards backed by the datasets
( ���). In addition to user-con�gured datasets, Canopy provides
several shared datasets and visualizations containing common
high-level features, plus tools for drilling down into the under-
lying traces if deeper inspection is needed ( ���).
�.� Instrumentation APIs
Instrumentation broadly comprises three tasks: �) propagating
the TraceID alongside requests as they execute, to associate per-
formance data generated by different components; �) recording
the request structure, e.g.where andwhen it executes, causality
between threads and components, and network communica-
tion; and �) capturing useful performance data, e.g. logging
statements, performance counters, and stack traces.

Each Canopy instrumentation API performs a slice of these
tasks depending on what best aligns with the component
or programming language in question. Canopy’s low-level li-
braries in several languages allow users to manually log events
and pass TraceIDs between threads; howevermost APIs layer
higher-level concepts on top of these. For instance, in most
Facebook components, causality tracking is handled automat-
ically as part of a RequestContext interface that is solely re-
sponsible for passing aroundmetadata like TraceIDs. Instead
of events, some higher-level libraries have constructs for an-
notating segments of processing, such as try-with-resources
statements in Java:

try (Block b = Canopy.block(“Doing some work”)) { . . . }

Conversely, Facebook’s web servers are heavily continuation
based, so Canopy does not expose these concepts because it is
difficult tomanually track causality through asynchronous calls
and accurately attribute performance counters to work done.
Instead, Canopy’s PHP instrumentation library only supports
noting points in time and wrapping functions to profile, e.g.:

Canopy()->inform(‘Evicting Cache Entry’);
Canopy()->measure(‘Evicting’, $evictFunction);

Canopy, Facebook





stick those events in kafka
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columnar storage 
changed my life



40 2. WORKLOADS AND SOFTWARE INFRASTRUCTURE

pose often take advantage of resource replication that has already been provisioned for fault-toler-
ance, thereby achieving small additional overheads for existing systems. They predict that tail tol-
erant techniques will become more invaluable in the next decade as we build ever more formidable 
online web services.

2.6.5 LATENCY NUMBERS THAT ENGINEERS SHOULD KNOW
This section is inspired by Jeff Dean’s summary of key latency numbers that engineers should know 
[Dea09 ]. These rough operation latencies help engineers reason about throughput, latency, and ca-
pacity within a first-order approximation. We have updated the numbers here to reflect technology 
and hardware changes in WSC. 

Table 2.3: Latency numbers that every WSC engineer should know. (Updated 
version of table from [Dea09 ].)
Operation Time
L1 cache reference 1.5 ns
L2 cache reference 5 ns
Branch misprediction 6 ns
Uncontended mutex lock/unlock 20 ns
L3 cache reference 25 ns
Main memory reference 100 ns
Decompress 1 KB with Snappy [Sna] 500 ns
“Far memory”/Fast NVM reference 1,000 ns (1us)
Compress 1 KB with Snappy [Sna] 2,000 ns (2us)
Read 1 MB sequentially from memory 12,000 ns (12 us)
SSD Random Read 100,000 ns (100 us)
Read 1 MB bytes sequentially from SSD 500,000 ns (500 us)
Read 1 MB sequentially from 10Gbps network 1,000,000 ns (1 ms)
Read 1 MB sequentially from disk 10,000,000 ns (10 ms)
Disk seek 10,000,000 ns (10 ms)
Send packet California→Netherlands→California 150,000,000 ns (150 ms)

2.7  CLOUD COMPUTING
Recently, cloud computing has emerged as an important model for replacing traditional enterprise 
computing systems with one that is layered on top of WSCs. The proliferation of high speed inter-

The Datacenter as a Computer, Barroso et al



• 1TB Hitachi Deskstar 7K1000 

• disk seek time = 14ms 

• transfer rate = 69MB/s 

• 62.5 billion rows (= 1TB / 16 bytes) 

• 28 years (= 62.5 billion rows * 14 ms/row / 32×10^9 
ms/year)

The Trouble with Point Queries, Bradley C. Kuszmaul



• 1TB Hitachi Deskstar 7K1000 

• transfer rate = 69MB/s 

• 4 hours (= 1.000.000MB / 69MB/s / 3600 s/hour)



• SSD 

• transfer rate = 1GB/s 

• 15 minutes (= 1.000GB / 1GB/s / 60 s/min)



10GB



Dremel: Interactive Analysis of Web-Scale Datasets, Google



10 GB / 8 bytes per data point 

= 1.3 billion 
events



status 
200 
200 
200 
200 
404 
200 
200 
200 
404 
200

status 
4 * 200 

404 
3 * 200 

404 
200 



time-based partitioning



dynamic sampling



it's lossy, but that's fine



vectorized processing



Scuba: Diving into Data at Facebook, Facebook



sequential scans 
✖ 

columnar layout 
✖ 

time-based partitioning 
✖ 

compression / sampling 
✖ 

vectorized processing 
✖ 

sharding





putting it all 
together
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we need more of this 
in the monitoring space!



  SELECT user_id, COUNT(*) 
    FROM requests 
   WHERE status >= 500 
GROUP BY user_id 
ORDER BY COUNT(*) DESC 
   LIMIT 10



✨ top-k 🥇 

✨ cardinality 🌙 

✨ events 🎆
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