
Kubernetes
the Very Hard Way

Laurent Bernaille

Staff Engineer, Infrastructure

@lbernail

lbernail

Datadog

Over 350 integrations
Over 1,200 employees
Over 8,000 customers
Runs on millions of hosts
Trillions of data points per day

10000s hosts in our infra
10s of k8s clusters with 50-2500 nodes
Multi-cloud
Very fast growth

lbernail

Why Kubernetes?

Dogfooding

 Improve k8s integrations

Immutable

 Move from Chef

Multi Cloud

 Common API

Community

 Large and Dynamic

The very hard way?

It was much harder

lbernail

This talk is about the fine prints

“Of course, you will need a HA master setup”

“Oh, and yes, you will have to manage your certificates”

“By the way, networking is slightly more complicated, look
into CNI / ingress controllers”

lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Accessing services: Client-side load-balancing:
c. Ingresses: Getting data in the cluster

lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Accessing services: Client-side load-balancing:
c. Ingresses: Getting data in the cluster

Resilient and Scalable
Control Plane

lbernail

Kube 101 Control Plane

kubelet kubectl

etcd

apiserver

controllersscheduler

Master

lbernail

Making it resilient
etcd

apiserver

controllersscheduler

kubelet kubectl

Master

etcd

apiserver

controllersscheduler

Master

etcd

apiserver

controllersscheduler

Master

LoadBalancer

lbernail

Separate etcd nodes

apiserver

controllersscheduler

kubelet kubectl

Master
apiserver

controllersscheduler

Master
apiserver

controllersscheduler

Master

LoadBalancer

etcdetcdetcdetcdetcd

lbernail

Single active Controller/scheduler

apiserver

controllersscheduler

kubelet kubectl

Master
apiserver

controllersscheduler

Master
apiserver

controllersscheduler

Master

LoadBalancer

etcdetcdetcdetcdetcd

lbernail

Split scheduler/controllers

apiserver

kubelet kubectl

apiserver apiserver

LoadBalancer

etcdetcdetcdetcdetcd

scheduler

scheduler

controllers

controllers

lbernail

1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Accessing services: Client-side load-balancing:
c. Ingresses: Getting data in the cluster

What happens after “Kube 101”

Kubernetes and
Certificates

lbernail

From “the hard way”

lbernail

“Our cluster broke after ~1y”

lbernail

Certificates in Kubernetes

● Kubernetes uses certificates everywhere
● Very common source of incidents
● Our Strategy: Rotate all certificates daily

lbernail

Certificate management

etcd

apiserver

Vault

etcd PKIPeer/Server cert

Etcd Client cert

lbernail

Certificate management

etcd

apiserver

controllers

scheduler

Vault

etcd PKIPeer/Server cert

Etcd Client cert
kube PKI

Apiserver/kubelet client cert

Controller client cert

Scheduler client cert

kubelet Kubelet client/server cert

lbernail

Certificate management

etcd

apiserver

controllers

scheduler

Vault

etcd PKIPeer/Server cert

Etcd Client cert
kube PKI

Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

In-cluster
app

SA token

kubelet Kubelet client/server cert

lbernail

Certificate management

etcd

apiserver

controllers

scheduler

apiservice
webhook...

Vault

etcd PKIPeer/Server cert

Etcd Client cert

apiservice PKI

Apiservice cert (proxy/webhooks)

kube PKI
Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

In-cluster
app

SA token

kubelet Kubelet client/server cert

lbernail

Certificate management

etcd

apiserver

controllers

scheduler

apiservice
webhook...

Vault

etcd PKIPeer/Server cert

Etcd Client cert

apiservice PKI

Apiservice cert (proxy/webhooks)

kube PKI
Apiserver/kubelet client cert

kube kv
SA public key

SA private key

Controller client cert

Scheduler client cert

OIDC
provider

kubectl

OIDC auth

In-cluster
app

SA token

kubelet Kubelet client/server cert

Exception ?
Incident...

lbernail

Kubelet: TLS Bootstrap
apiserver

controllers
Vault

kube PKI

kube kv3- Get signing key

admin

1- Create Bootstrap token

2- Add Bootstrap token to vault

lbernail

Kubelet: TLS Bootstrap
apiserver

controllers
Vault

kube PKI

kube kv

kubelet

5- Verify RBAC for CSR creator
6- Sign certificate

1- Get Bootstrap token

2- Authenticate with token
4- Create CSR

7- Download certificate
8- Authenticate with cert
9- Register node

3- Verify Token and map groups

lbernail

Kubelet certificate issue
1. One day, some Kubelets were failing to start or took 10s of minutes
2. Nothing in logs
3. Everything looked good but they could not get a cert
4. Turns out we had a lot of CSRs in flight
5. Signing controller was having a hard time evaluating them all

CSR resources in the cluster
Lower is better!

lbernail

Why?
Initial creation

1. Authenticate with bootstrap token, mapped to group “system:bootstrappers”
2. Create CSR
3. “system:bootstrappers” has role “system:certificates.k8s.io:certificatesigningrequests:nodeclient”

Renewal
1. Authenticate with current node certificate, mapped to group “system:nodes“
2. Create CSR
3. Not allowed for auto-sign

Also needed for
“system:nodes”

Exception 2?
Incident 2...

lbernail

Temporary solution
apiserver

webhook

Vault

kube kv
Get cert and key

admin

Create webhook with
self-signed cert as CA

Add self-signed cert + key to Vault

One day, after ~1 year
● Creation of resources started failing (luckily only a Custom Resource)
● Cert had expired...

lbernail

Take-away
● Rotate server/client certificates
● Not easy

But, “If it’s hard, do it often”
> no expiration issues anymore

Impact of
Certificate rotation

lbernail

Apiserver restarts
apiserver restarts

etcd slow queries

etcd traffic

We have multiple apiservers
We restart each daily

Significant etcd network impact
(caches are repopulated)

Significant impact on etcd performances

lbernail

Apiserver restarts, continued
apiserver restarts

coredns memory usage

● Apiserver restarts
● clients reconnect and refresh their cache

> Memory spike for impacted apps

No real mitigation today

lbernail

Unbalanced apiserver traffic

Number of connections / traffic very unbalanced
Because connections are very long-lived

More clients => Bigger impact clusterwide

15MB/s

2.5MB/s

2300 connections

300 connections

lbernail

Take-away
Restarting components is not transparent
○ Not limited to apiservers, some issues with the Kubelet too

It would be great if
○ Components could transparently reload certs (server & client)
○ Clients could wait 0-Xs to reconnect to avoid thundering herd
○ Reconnections did not trigger memory spikes
○ Connections were rebalanced (kill them after a while?)

lbernail

What happens after “Kube 101”
1. Resilient and Scalable Control Plane
2. Securing the Control Plane

a. Kubernetes and Certificates
b. Exceptions?
c. Impact of Certificate Rotation

3. Efficient networking
a. Giving pod IPs and routing them
b. Accessing services: Client-side load-balancing:
c. Ingresses: Getting data in the cluster

Efficient
networking

lbernail

Throughput
Trillions of data points daily

Scale
1000-2000 nodes clusters

Network challenges

Latency
End-to-end pipeline

Topology
Multiple clusters
Access from standard VMs

Giving pods IPs &
Routing them

lbernail

From “the Hard Way”

node IP

Pod CIDR for this node

lbernail

Small cluster? Static routes

Node 1

IP: 192.168.0.1
Pod CIDR: 10.0.1.0/24

Routes (local or cloud provider)
10.0.1.0/24 => 192.168.0.1
10.0.2.0/24 => 192.168.0.2

Node 2

IP: 192.168.0.2
Pod CIDR: 10.0.2.0/24

lbernail

Mid-size cluster? Overlay

Node 1

IP: 192.168.0.1
Pod CIDR: 10.0.1.0/24

Node 2

IP: 192.168.0.2
Pod CIDR: 10.0.2.0/24

VXLAN VXLAN

Tunnel traffic between hosts
Examples: Calico, Flannel

lbernail

Large cluster with a lot of traffic?
Native pod routing

Performance

Datapath: no Overlay
Control plane: simpler

Addressing

Pod IPs are accessible from
● Other clusters
● VMs

lbernail

In practice

On premise

BGP
Calico
Kube-router

AWS

Additional IPs on ENIs
AWS EKS CNI plugin
Lyft CNI plugin
Cilium ENI IPAM

GCP

IP aliases

lbernail

A bit more complex on AWS

eth1

agent Pod 1 Pod 2

kubelet

cni

containerd
CRI

CNI

eth0

Attach ENI
Allocate IPs

Crea
te

ve
th

ip 1
ip 2
ip 3

Routing rule
“From IP1, use eth1”

Routing

eth0
ip 1

lbernail

Take-away

● Native pod routing has worked very well at scale
● A bit more complex to debug
● Much more efficient datapath
● Topic is still dynamic (Cilium introduced ENI recently)
● Great relationship with Lyft / Cilium

Accessing Services

lbernail

Kube-proxy default: iptables

Mid size cluster
iptables -S -t nat | wc -l
48688

lbernail

Alternative: IPVS

Pod X

Pod Y

Pod Z

Service ClusterIP:Port S
Backed by pod:port X, Y, Z

Virtual Server S
Realservers
- X
- Y
- Z

kube-proxy apiserver

Watches endpoints
Updates IPVS

lbernail

New connection

Pod X

Pod Y

Pod Z

Virtual Server S
Realservers
- X
- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

App establishes connection to S
IPVS associates Realserver X

lbernail

Pod X deleted

Pod X

Pod Y

Pod Z

Virtual Server S
Realservers

- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

Apiserver removes X from S endpoints
Kube-proxy removes X from realservers
Kernel drops traffic (no realserver)

lbernail

Pod X deleted

Pod X

Pod Y

Pod Z

Virtual Server S
Realservers

- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

Pod X sends FIN on exit
Conntrack entry deleted
Connection from A terminates

FIN

lbernail

What if X doesn’t send FIN?

Pod Y

Pod Z

Virtual Server S
Realservers

- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

Traffic blackholed until App detects issue
> tcp_retries2 (default 15)
> ~15mn

lbernail

Mitigation

Pod Y

Pod Z

Virtual Server S
Realservers

- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

net/ipv4/vs/expire_nodest_conn
Delete conntrack entry on next packet
Forcefully terminate (RST)

RST

lbernail

Limit?

● No graceful termination
● As soon as a pod is Terminating connections are destroyed
● Addressing this took time

lbernail

Graceful termination

Pod X

Pod Y

Pod Z

Virtual Server S
Realservers
- X Weight:0
- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

Apiserver removes X from S endpoints
Kube-proxy sets Weight to 0
No new connection

lbernail

Garbage collection

Pod X

Pod Y

Pod Z

Virtual Server S
Realservers

- Y
- Z

kube-proxy apiserver

IPVS conntrack

App A => S >> A => X

Pod exits and sends FIN
Kube-proxy removes realserver when it
has no active connection

FIN

lbernail

What if X doesn’t send FIN?

Pod Y

Pod Z

Virtual Server S
Realservers
- X Weight:0
- Y
- Z

kube-proxy

IPVS conntrack

App A => S >> A => X

Conntrack entries expires after 900s
If A sends traffic, it never expires
Traffic blackholed until App detects issue

~15mn
> Mitigation: lower tcp_retries2

lbernail

Take-away

● IPVS has been great for us
● IPVS is in a good state now
● Several improvements in the works
● But harder than we expected
● I ended up reviewer/approver for kube-proxy/IPVS

Ingresses

lbernail

Ingress: cross-clusters, VM to clusters

A A

A

B B

B

C

C

D

D

Cluster 1

Cluster 2Classic (VM)

C?

C? B?

lbernail

Master

Kubernetes default: LB service

External
Client Load-Balancer

pod

pod

pod

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller

lbernail

Master

Inefficient Datapath & cross-application impacts

Web traffic Load-Balancer

web-1

web-2

web-3

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller

kafka

lbernail

Master

ExternalTrafficPolicy: Local?

Web traffic Load-Balancer

web-1

web-2

web-3

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Healthchecker

data path
health checks

configuration (from watching ingresses on apiservers)

service-controller

kafka

lbernail

L7-proxy ingress controller

data path
health checks
configuration

from watching ingresses/endpoints on apiservers (ingress-controller)
from watching LoadBalancer services (service-controller)

External
Client Load-Balancer

l7proxy

l7proxy

kube-proxy

kube-proxy

kube-proxy

NP

NP

NP

Heathchecker

ingress-controller

pod
pod

pod
pod

Create l7proxy deployments
Update backends using service endpoints

Master
service-controller

lbernail

Limits

All nodes as backends (1000+)
Inefficient datapath
Cross-application impacts

Alternatives?

ExternalTrafficPolicy: Local?
> Number of nodes remains the same
> Issues with some CNI plugins

K8s ingress
> Still load-balancer based
> Need to scale ingress pods
> Still inefficient datapath

Challenges

lbernail

Our target: native routing

External
Client ALB

pod

pod

pod

Healthchecker

data path
health checks

alb-ingress-controller

configuration (from watching ingresses/endpoints on apiservers)

lbernail

Limited to HTTP ingresses

No support for TCP/UDP

Ingress v2 should address this

Remaining challenges

Registration delay

Slow registration with LB
Pod rolling-updates much faster

Mitigations
- MinReadySeconds
- Pod ReadinessGates

lbernail

Workaround

External
Client Load-Balancer

l7proxy

l7proxy

Heathchecker
pod
pod

pod
pod

Not managed by k8s Dedicated nodes
Pods in host network

TCP / Registration delay not manageable
> Dedicated gateways

lbernail

Take-away

● Ingress solutions are not great at scale yet
● May require workarounds
● Definitely a very important topic for us
● The community is working on v2 Ingresses

Conclusion

lbernail

A lot of other topics

● DNS (it’s always DNS!)
● Challenges with Stateful applications
● How to DDOS <insert ~anything> with Daemonsets
● Node Lifecycle
● Cluster Lifecycle
● Deploying applications
● ...

lbernail

You want more horror stories?
“Kubernetes the very hard way at Datadog”
https://www.youtube.com/watch?v=2dsCwp_j0yQ

“10 ways to shoot yourself in the foot with Kubernetes”
https://www.youtube.com/watch?v=QKI-JRs2RIE

“Kubernetes Failure Stories”
https://k8s.af

https://www.youtube.com/watch?v=2dsCwp_j0yQ
https://www.youtube.com/watch?v=QKI-JRs2RIE
https://k8s.af

lbernail

Key lessons
Self-managed Kubernetes is hard
> If you can, use a managed service

Networking is not easy (especially at scale)

The main challenge is not technical
> Build a team
> Transforming practices and training users is very important

Thank you
We’re hiring!
https://www.datadoghq.com/careers/

laurent@datadoghq.com
@lbernail

