
Pulling the puppet strings
with Ansible

Brian J. Atkisson, RHCA
Infrastructure Domain Architect

1

A Story

A Brief History of RH IT Config Management

CFEngine

Puppet
(open source)

20092001
2007

Func

Ansible

2014

2015

Config
RPMs

1998

2005 - Initial release of Puppet
2012 - Initial release of Ansible

Acquisition

Ansible Tower

2018

History

CFEngine Migration to Puppet (2007)

● Development teams doing own thing
● Applications codified into CFEngine by

Operations
○ Thrown over the wall the night

before a release
● Home-grown templating engine

○ cfgen
○ Perl “DSL”

Puppet

Puppet Management Ideal

● Puppet modules developed along side
applications
○ Stored in Git
○ Environment concept

● Application teams manage application
modules

● Infrastructure teams manage base OS,
monitoring, IAM, etc modules

● Release engineering manages modules
shared between application teams
(JBoss, Java, Rails, Apache, PHP, etc)

● … and there was peace in our time

Puppet

Realities of Puppet
a decade later...

● Difficult balance between old and new
operating systems

● Language is hard to learn
○ Manifests
○ ERB templates
○ Dependency ordering is difficult

■ Especially in large codebases
● Puppet was extremely slow, scaling

challenges
○ Constant game of fix-the-bottleneck
○ Reliance on storeconfigs
○ Global scale

Puppet

● Our implementation was even harder to learn
○ Pre-dates tooling

● Updates approaching impossible
○ Large code base
○ Updating modules from puppet 3.x to 5.x

● App developers disliked Puppet
○ A lot of overhead
○ (and Ruby just isn’t cool anymore)

● We managed too many objects
○ including OS defaults

● Puppet is extremely weak at orchestration

Puppet

Realities of Puppet
a decade later...

Hybrid Approach

● Ansible for orchestration
○ Puppet runs kicked off by Ansible
○ Native and/or trivial integration with cloud solutions,

appliance APIs and just about everything else
● Dependency ordering

○ No more periodic race conditions
○ Just write the playbook in order

● Easy to learn and understand
● Agentless

○ OS Permission model

Ansible

Tower / AWX

● Centralized playbook execution
● RBAC

○ Credential management
● Remote (API) playbook execution
● Autohealing systems

○ Nagios event handlers
● Metrics

Ansible

Full Adoption

● AWS and OpenStack infrastructure
○ Infrastructure, OS configuration and

orchestration
○ Long-lived and ephemeral VMs

● Traditional Data Center
○ Provisioning
○ Laying down Puppet-generated OS

templates
○ Orchestration and Releases

● OpenShift and container management
● CI/CD

○ Jenkins -> Ansible -> all the things

Ansible

Federated Management

● App teams run their VMs top-to-bottom
● Infrastructure teams provides ‘suggested’ Ansible roles (easy

path)
○ Tower integration

● Option to BYOCM
○ Mandatory and optional configuration

■ Compliance auditing with OpenSCAP
● Centralized role distribution (“Galaxy”)

○ Promotes open source development (app role)
○ Inner sourcing for RH-only bits (profile role)

Management

Playbook Management

● Roles contain smallest functional component
● Encourages Reuse
● All Apps have at least two roles

○ Main functionality (often multiple roles)
■ Anyone outside Red Hat should be able

to use
■ Publish on Galaxy
■ Re-use what is on Galaxy

○ Wrapper role
■ Our environment-specific logic

Roles

RHIT Operating System Support

● RHEL6 requires Puppet (in our environment)
● RHEL7 is last Puppet-managed OS
● Our aging Puppet deployment will not support

RHEL8 in the current form, Ansible only
○ Upgrade your stuff. <- note the period

● Most RHIT run Fedora, RHEL or Mac
○ Ad hoc playbooks

■ Apple’s unfrozen caveman python
version problematic

○ Tower-executed playbooks

Support

Ansible

● Use the best tool for the job
○ Not always Ansible
○ Sometimes that means just writing a script

● Don’t be afraid to write an Ansible module
○ Contribute it upstream, they love it

Let Ansible be Ansible

Ansible

● Data elements removed from configuration management
○ Service auto-discovery

■ Istio, DNS, etc
○ User permissions and authorizations

■ FreeIPA/IdM/LDAP/AD
○ Secrets

■ Evaluating new secret storage

Let Ansible be Ansible

Lessons Learned

Lessons

● Only manage what you need to manage
○ Config management != audit system
○ Don’t manage the defaults

● Use authoritative data sources where you can
○ LDAP, DNS SRV records, etc
○ Service mesh
○ Dynamic inventories are awesome, use them

■ Satellite/FreeIPA/$cloud
● Don’t be clever

Lessons Learned

● Tools don’t fix people problems
● Config Management Standards Body

○ Work with service owners
○ Set standards and tools
○ Consumable, supportable code
○ Encourage reuse
○ Stop the crazy
○ Coordinate version updates

Lessons

Lessons Learned

● Unmanaged things are unmanaged
○ Don’t make manual changes

● Use Tower or AWX
○ Centralized, auditable playbook execution
○ Credential management
○ Dynamic Inventory
○ Playbook chaining and advanced workflows
○ Scheduled jobs

■ More useful than you’d think
■ Replaced many cronjob’d perl scripts

○ Notifications

Lessons

Next Steps

● Open hybrid data center using this model
○ OpenStack
○ Red Hat Virtualization
○ Ceph
○ OpenShift

Next Steps

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of

enterprise open source software solutions.

Award-winning support, training, and consulting

services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

20

