Multi-GPU Accelerated Processing of Time-Series Data of Huge Academic Backbone Network in ELK Stack

Usenix LISA19
October 28–30 2:00 pm–2:45 pm
Portland, OR, USA

Ruo Ando
Center for Cybersecurity Research and Development, National Institute of Informatics
Stand on huge academic backbone

- Three years (painful) operational experience in deploying multi-GPU accelerated monitoring system of huge academic backbone network.

- Science Information Network (SINET) is a Japanese academic backbone network for more than 800 research institutions and universities.
Outline

- Overview: Pipeline of Elastic stack, Multi GPU and Splunk
- Backgrounds and bottlenecks
- Strategy of parallelism for unpredictable
- Design philosophy
- Floorplan and configuration (Elastic stack and Splunk)

- Bottleneck 1 - Huge pagination without scoring
- Bottleneck 2 - Direction discrimination of big session data
- Bottleneck 3 - Histogramming with millisecond interval

- Conclusion and impressions
Pipeline: PA, ELK, GPU and Splunk

1. LogStash
 - rsyslog
 - FileBeat
 - PA-7080

2. Elasticsearch
 - Shards*36
 - Kibana

3. Multi-GPU server
 - GPU*4
 - CPU
 - RAM

4. Splunk
 - indexer
 - master
 - Search head

【1】RETRIEVAL
- sliced scroll()
- 128 * 36 queries
- Huge pagination

【2】DISCRIMINATION
- thrust transform()
- 32-64 threads
- Massive bitmasking

【3】HISTOGRAMMING
- thrust reduce_by_key()
- 4-8 threads
- Billions by millisecond

CPU: Hashmap
Background and bottlenecks
2016 Sep -2019 Oct
2010s - Universities under (massive) attack

■ (Kind of) a top-down mission from Japanese government, ministry and universities.

☐ In 2016, the minister residence (a little similar to White House in US) worried so much about information breaches and assurance in Japanese universities.

☐ SINET connects various kinds of research facilities in such fields as space science, high-energy physics, nuclear fusion, computing science, and so on.

☐ (Perhaps)↑ These research facilities attracted APT people
Bottlenecks in 2016 - 2018: Large computing time

- For example, to handle session data stream of 100GB (for 24 hours, randomly generated in this case) ...

1. DATA DUMP: It took 1664 minutes (about 26 hours) to retrieve all data from Elastic search.

2. DIRECTION DISCREMINATION: It took 704 minutes (about 11.5 hours) for filtering ingress/egress traffic.

3. HISTOGRAMMING: It took 476 minutes (about 8 hours) with the millisecond interval.
Three pitfalls on pipeline (2016-2018)

1. Elastic Stack
 - rsyslog
 - FileBeat
 - PA-7080
 - Shards*36
 - Kibana

 Huge pagination without scoring
 - 1664m32.441s
 - 1440m (24 hours)!
 - 132m34.298s (12.6x)

2. Multi-GPU server
 - GPU*4
 - CPU
 - RAM

 Massive bitmasking
 - 704m47.418s
 - 174m7.888s (4.04x)

3. Splunk
 - indexer
 - master

 Billions by millisecond
 - 476m41.308s
 - 12m34.706s (39.6x)
How can we reduce unreasonable computation time by multi GPU acceleration?
Philosophy: Data mining is plastic art

"Data mining is often considered in terms of location and extraction of nuggets of information from a sea of background noise. But this metaphor is entirely wrong. Data mining is essentially a plastic art, for it responds to the sculpture of the medium itself, to the background noise itself."
Gayatri Spivak, “Can the Subaltern Speak?”

In the world of 100 Gbps traffic stream in 2010s, the crafted filtering is the first priority.
STRATEGY of parallelism

Dynamic allocation for unpredictables
Sessions in the World of Extremistan

- Sessions are not homogeneous. Some are large, small, short, long...

- Sessions are unpredictable. We cannot use static scheduling.

- Task decomposition is useful when the amount of processing time for each piece is different or even unpredictable at the outset of computation.

Sessions are anthropomorphized.
Task decomposition and pipeline

Dataflow decomposition is for processing a stream of data in multiple stages.

In **functional decomposition**, process is split into the different steps which take place.

Functional Decomposition
- Divide & Conquer
- Even based Coordination
- Task Decomposition

Task Decomposition
- Divide & Conquer
- Even based Coordination
- Task Decomposition

Pipeline
- PaloAlto 7080
- Elastic Stack
 - Concurrent Hashmap of Intel TBB
 - Multiplexed scroll API
 - Thrust API on multi GPUs
 - Distributed indexer
- Splunk
- GPU
- CPU
- Multi-GPU server
Session data are not stored evenly in each shard of Elasticsearch.

In a case where the amount of processing between tasks is variable or unpredictable, dynamic allocation scheme is useful.

We will suffer some overhead associated with a dynamic allocation scheme, but the benefits will be exceeds the overhead of load-balanced execution.
Task decomposition (dynamic allocation) with multi-GPUs

- # of shards: 36
- # of JSON/CSV: 128
- # of GPU: 8

GPU accelerates consumer threads.

- Task decomposition is useful for cases when there are many more pieces of work (# of JSON/CSV:128) than threads (GPU:8).

Defined as global static variable Queue
```c++
void Pthread_consumer()
{
    size_t kBytes = data.size() * sizeof(unsigned long long);
    unsigned long long *key;
    key = (unsigned long long *)malloc(kBytes);

    reduction(key, value, key_out, value_out, kBytes, vBytes, data.size(),
              &new_size, thread_id);

    iTbb_Vec_timestamp::accessor tms;
    TbbVec_timestamp.insert(tms, key_out[i]);
    tms->second += value_out[i];

    void reduction(unsigned long long *key, long *value,
                    unsigned long long *key_out, long *value_out,
                    int kBytes, int vBytes, size_t data_size,
                    int *new_size, int thread_id);

    cudaSetDevice(thread_id);

    thrust::sort_by_key(d_vec_key.begin(), d_vec_key.end(), d_vec_value.begin());

    auto new_end = thrust::reduce_by_key(d_vec_key.begin(), d_vec_key.end(),
                                         d_vec_value.begin(), d_vec_key_out.begin(),
                                         d_vec_value_out.begin());
}
```
Layers of parallelism and memory constraint

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Scalability (server-side)</th>
<th>Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM < 512GB - 1.5T</td>
<td>[B] Process-level parallelism</td>
<td>Multiplexed scroll API</td>
</tr>
<tr>
<td>RAM < 64GB</td>
<td>[C] Thread-level parallelism</td>
<td>Concurrent Hashmap of Intel TBB</td>
</tr>
<tr>
<td>GPU memory < 32GB</td>
<td>[D] Vector-level parallelism</td>
<td>Thrust API invocation on multi GPUs</td>
</tr>
</tbody>
</table>

Granularity (client-side)

The more distant from server, the less memory.
Pipeline completed

Process-level parallelism – Huge pagination: 128 processes
Thread-level parallelism – Dynamic allocation: 64 threads
Vector-level parallelism – Dynamic allocation: 8 threads
Machine-level parallelism – Distributed indexing: 6 indexers
FLOORPLAN and cluster CONFIGURATION

Elastic stack and Splunk
Defense line (2016 - 2019) - Two teams

1. Elasticsearch
 - rsyslog
 - FileBeat
 - PA-7080
 - Kibana

2. Multi-GPU server
 - GPU*4
 - CPU
 - RAM
 - GPU
 - GPU
 - GPU
 - GPU
 - IN
 - OUT

3. Splunk
 - indexer
 - indexer
 - master
 - Search head

 Officials in 100 universities

■ Academic officials (government employees): In Japan, their term is often several years. Some are often newbies about IT security.
■ SOC team: They are specialist with 3 years and more experience. They are responsible for prioritizing alerts, analyzing incidents.
Floorplan - Their requirements (and complaints)

- University officials:
 "Analysts, don't touch our ELK stack! (Aggregation is memory intensive!)")"
 -> separating analytics from Elastic stack

- SOC team:
 “Proritizing alerts is our first priority. For being proactive, chagnepoints should detected and reported in mechanized manner.”
 -> introducing Splunk with feature rich commands
From purely financial perspective, GPU is impressive. It is estimated GPU’s massively parallel processing could sometimes deliver performance up to a CPU-only configuration at one-tenth the hardware cost, and one-twentieth the power and cooling costs.

Reference: The Scream @ public domain
Cluster configuration

Logstash * 3, master node *3. Data nodes * 9 – shards * 36 (9*4)

Functional decomposition. Process is divided into geographical locations.

Search head / Master node * 1 indexer * 5
Elastic Stack

• Distributed: Elasticsearch is a distributed in nature. Elastic stack has been designed for scaling horizontally, not vertically.

• High availability
• REST-based
• Powerful query DSL
• Schemeless

We are running 9 (servers) * 4 (data nodes) = 36 shards.
ELK Stack - From PA-7080 to Logstash via rsyslog

- The Beats is an input plugin which enables Logstash to handle events from the Elastic Beats framework.
- FileBeat is a lightweight log shipping agent for shipping logs from local files. It is used to monitor log directories and files, and send them to Elasticsearch.
Splunk – Time series indexer

- Splunk has three main functionalities:
 - Data collection
 - Data indexing
 - Search and analysis

- Being proactive: Splunk’s alert can be activated whenever a search is executed on or whenever certain conditions are met.

- Feature-rich SPL commands
 - transaction, concurrency, and streamstats
Splunk - From Multi GPU server to distributed indexer

Geofilter = geostats + streamstats

```bash
[geofilter] source="/mnt/sdc/splunk_direction/dev02/msec-ingress/*" host="h-cp02" sourcetype="csv" earliest=-4d@d latest=-3d@d | iplocation sourceIP | table _time sourceIP City | where City == "CityName" | timechart count span=1m | streamstats window=12 avg(count) as avg stdev(count) as stdev | eval lower_bound = avg - stdev * 2 | eval upper_bound = avg + stdev * 2 | eval isOutlier = if(count>upper_bound OR count<lower_bound, 1, 0) | fields - avg stdev
```
Insight: The treaty of Westphalia is over

```
[geofilter] source="/mnt/sdc/splunk_direction/dev02/msec-ingress/*" host="h-cp02" sourcetype="csv" earliest=-4d@d latest=-3d@d | iplocation sourceIP | table _time sourceIP City | where City == "CityName" | timechart count span=1m | streamstats window=12 avg(count) as avg stdev(count) as stdev | eval lower_bound = avg - stdev * 2 | eval upper_bound = avg + stdev * 2 | eval isOutlier = if(count>upper_bound OR count<lower_bound, 1, 0) | fields - avg stdev
```
Note: Data (in this talk) is randomly generated!

"2019/07/02 00:00:32.030", "2019/07/02 00:00:32", "2019/07/02 00:00:32", "2019/07/02 00:00:32", "986", "X.X.X.X", "5478", "XW", "Y.Y.Y.Y", "3227", "Kj", "YwW", "n2uXvPwIn", "Oo1", "rcw5L", "uiz9FUNg", "9", "HfeQtkBXmuomcUojT6feWqNETl", "31", "879", "697", "545", "199", "542", "rand-pa1"

3,600,000,000 (729GB)

Random data generator
https://github.com/RuoAndo/Usenix_LISA19/generator

Elasticsearch multi-process data exporter
https://github.com/RuoAndo/Usenix_LISA19
Bottleneck 1
Huge pagination without scoring
Parallel scroll API invocation
Scroll API - Pagination without scoring

• **Data pagination**: We often need more and more data either to render on a page or to analyze in the backend. Pagination makes it possible to retrieve a limited number of documents from Elasticsearch.

• **Scan-scroll**: While running Elasticsearch, a functionality which is needed frequently is:
 - Returning a large set of data to analyze
 - To re-index from one index to another

These two types of data retrieval do not require any document scored or sorted.
Pitfall 1: It took 1664 minutes to complete the retrieval of session data from Elasticsearch by single process of python script. Our ELK stack has 36 shards and therefore multiple process invocation of scroll API does not impact the resource utilization of Elasticsearch.
Three kinds of Elasticsearch nodes

- **Client node** acts as a query router and a load balancer. A client node can be used to query as well as index processes.
- **Data node** is responsible for holding the data, merging segments and executing queries.
- **Master node** is responsible for the management of the complete cluster.
Multiplexed Scroll API
- How to speed up the retrieval (shards * slices)

• Index and shards: an index is the logical place where data is stored. Each index can be scattered onto multiple Elasticsearch nodes and split into one or more smaller pieces called shards.

• Each process has a slice over multiple shards. If we have M processes and each process queries for N shards, which result in that N*M queries are invoked.
Multiplexed Scroll API - Numerical results

<table>
<thead>
<tr>
<th>procs</th>
<th>elapsed time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1664m32.441s</td>
</tr>
<tr>
<td>4</td>
<td>879m58.432s</td>
</tr>
<tr>
<td>8</td>
<td>490m50.745s</td>
</tr>
<tr>
<td>16</td>
<td>318m43.851s</td>
</tr>
<tr>
<td>32</td>
<td>237m25.585s</td>
</tr>
<tr>
<td>64</td>
<td>157m3.422s</td>
</tr>
<tr>
<td>128</td>
<td>132m34.298s (x12.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>procs</th>
<th>elapsed time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5680m59.927s</td>
</tr>
<tr>
<td>4</td>
<td>2963m59.851s</td>
</tr>
<tr>
<td>8</td>
<td>1718m54.688s</td>
</tr>
<tr>
<td>16</td>
<td>1149m11.902s</td>
</tr>
<tr>
<td>32</td>
<td>826m25.076s</td>
</tr>
<tr>
<td>64</td>
<td>589m55.432s</td>
</tr>
<tr>
<td>128</td>
<td>522m50.694s (x10.8)</td>
</tr>
</tbody>
</table>

The ratio of speeding up depends on the performance of the cluster of data nodes. With 36 shards, the speeding up is ranging from 10 to 12 times while the speeding up with 4 shards is from 4 to 5 times.
Task decomposition is useful for cases when there are many more pieces of work (# chunks) than threads.
Parallel exporter likes task decomposition

N chunks (CSV files)
N: 128

of processes
of JSON files
of chunks
M: 8
of GPU

Dynamic allocation (task decomp) is useful when N > M.
Bottleneck 2
Ingress/egress discrimination

Bulk masking by Thrust transform()
Direction discrimination - massive bitmasking

"2019/07/02 00:00:11.749", sourceIP1, destIP1, "841","25846
"2019/07/02 00:00:47.132", sourceIP2, destIP2, "784","52326
"2019/07/02 01:01:07.338", sourceIP3, destIP2, "912","12947
"2019/07/02 01:01:07.421", sourceIP4, destIP4, "336","50346
"2019/07/02 01:01:11.995", sourceIP5, destIP5, "278","36305
"2019/07/02 00:00:47.132", sourceIP6, destIP6, "784","50000
"2019/07/02 01:01:17.073", sourceIP7, destIP7, "478","41214
"2019/07/02 01:01:18.987", sourceIP8, destIP8, "365","33646
"2019/07/02 01:01:29.376", sourceIP9, destIP9, "953","60043

IF sourceIP1 << xx ∧ X.X.X.X << xx
THEN "2019/07/02 00:00:11.749", srcIP1, destIP1, INGRESS

IF destIP2 << xx ∧ Y.Y.Y.Y << xx
THEN "2019/07/02 00:00:47.132", srcIP2, destIP2, EGRESS

<< : (bit) masking * 3,600,000,000 * 2* N

Huge amount of iteration should be processed (N > hundreds)
We are here

1. LogStash
 - rsyslog
 - FileBeat
 - PA-7080

2. Elasticsearch
 - JSON
 - CPU
 - RAM
 - Shards*36
 - Kibana

3. Multi-GPU server
 - GPU*4
 - GPU
 - GPU
 - GPU
 - IN
 - OUT

4. Splunk
 - indexer
 - indexer
 - master
 - Search head

Bottleneck 2: Session direction discrimination takes unreasonable computing time (704 Minutes) with the bitwise and shift operation on multi-core CPU multithreading.

704m47.418s -> 174m7.888s

OUTPUT: "2019/07/02 00:00:11.749", sourceIP1, destIP1, "841","25846", EGRESS
Thrust is a template library that enables a high-level approach to GPU instead of low-layer kernel implementation. Syntax is similar to the way of the standard STL library. Thrust effectively cuts the implementation cost associated with GPU computing.
Simple and rustic - Bulk masking with Thurst

1: void discern(unsigned long *Ipaddress, unsigned long *netmask, unsigned long address_to_match, double *result, size_t data_size, int thread_id)
3: {
4: int GPU_number = thread_id;
5: cudaSetDevice(GPU_number); //Switch to GPU 1-8

6: thrust::transform(Ipaddress_dv.begin(), Ipaddress_dv.end(),
7: netmask_dv.begin(), masked_Ipaddress_dv.begin(),
8: thrust::bit_and<unsigned long>()); //bitmasking

 // Without tidy parameter selection in loop division or data decomp
9: thrust::transform(masked_IPaddress_dv.begin(),masked_IPaddress_dv.end(),
10: address_to_match_dv.begin(), result_dv.begin(), thrust::minus<double>());
}

(sourceIP[] << xx) - (X.X.X.X[] << xx) = result[] (0: ingress)
Insight: GPGPU is handaxe

Cut! 1664m32.441s
476m41.308s

Reduce! 704m47.418s

Expose!

For thousands of centuries, over much of the planet, a handaxe was de rigueur. --
The digital ape is a direct descendant of the axe-wielding hominin.

Nigel Shadbolt, Roger Hampson, “The Digital Ape: how to live (in peace) with smart machines”
Bottleneck 3
Histogramming in milliseconds
Map-Reduce and Tiling
Map-Reduce - Billions by millisecond

① Fine reduction
"2019/07/02 00:00:47.132", "102326"

② Coarse reduction
"2019/07/02 00:00:47.132", "214652"

"2019/07/02 00:00:47.132", "112326"

① Fine reduction
"2019/07/02 00:00:47.132", "60000"

MAP: {timeseries, bytes}
A collection of data items and associated value with each item in the collection.

3,600,000,000 (729GB)
Bottleneck 3: Time histogramming on server side took unreasonable computing time (476 minutes).

"2019/07/02 00:00:47.132", sourceIP1, destIP2, "784", ingress
"2019/07/02 00:00:47.132", sourceIP3, destIP4, "700", ingress
"2019/07/02 00:00:47.132", "1484", INGRESS
Map reduce + Tiling (Blocking)

Tiling is dividing a process into a set of parallel tasks of a suitable granularity.

Session Data

3,600,000,000

Map

Reduce

GPU

Merge scatter pattern
Intel TBB(Concurrent Hashmap)

Pairwise reduction pattern
CUDA Thrust (reduce_by_key())

Binary operation to reduce an input sequence to a single value.

< 86,400,000

(N: < 1024)

Merge

< 86,400,000

A B C D E F

[1, 5, 6, 2, 2, 4]

C A X F B

"2019/07/02 00:00:47.132", "214652"
Pairwise reduction pattern - CUDA Thrust

KEY[0]="2019/07/02 00:00:11.749" / VALUE[0]="742"

Reduce_by_key() is a generalization of reduce to key-value pairs.

```cpp
auto new_end = thrust::reduce_by_key(
    d_vec_key.begin(),
    d_vec_key.end(),
    d_vec_value.begin(),
    d_vec_key_out.begin(),
    d_vec_value_out.begin());
```
In a merge scatter, outputs which collide while implementing a scatter pattern are combined with an associative operator.
Merge scatter and pairwise reduction

As the density of session data (points/interval) is increasing, pairwise reduction is getting faster. Run this command:

https://github.com/RuoAndo/Usenix_LISA19/blob/master/misc/test.sh
Merge scatter and pairwise reduction

- GPU and CPU are complementary.

- Resolving collisions in merge scatter pattern comes at a cost in some cases.

- As data density in time-series is getting high, pairwise reduction gains an advantage (faster).

- On the other hand, highly concurrent container is only effective and reasonable way to share data among multiple threads.
```c
typedef tbb::concurrent_hash_map<long, int> iTbb_Vec_timestamp;
static iTbb_Vec_timestamp TbbVec_timestamp;

void Pthread_consumer()
{
    size_t kBytes = data.size() * sizeof(unsigned long long);
    unsigned long long *key = (unsigned long long *)malloc(kBytes);
    reduction(key, value, key_out, value_out, kBytes, vBytes, data.size(),
              &new_size, thread_id);
    iTbb_Vec_timestamp::accessor tms;
    TbbVec_timestamp.insert(tms, key_out[i]);
    tms->second += value_out[i];
}

void reduction(unsigned long long *key, long *value, unsigned long long *key_out, long *
value_out, int kBytes, int vBytes, size_t data_size, int *new_size, int thread_id)
{
    cudaSetDevice(thread_id);
    thrust::sort_by_key(d_vec_key.begin(), d_vec_key.end(), d_vec_value.begin());
    thrust::reduce_by_key(d_vec_key.begin(), d_vec_key.end(), d_vec_value.begin(), d_vec_value_out.begin(),
                          d_vec_key_out.begin(), d_vec_key_out.end(), d_vec_value_out.end());
```
Histogramming - MultiGPU acceleration (Tesla V100)

<table>
<thead>
<tr>
<th></th>
<th>single GPU and 4 threads - 9GB</th>
<th>multi GPU and 4 threads - 9GB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>memory transfer (sec)</td>
<td>reduction (sec)</td>
</tr>
<tr>
<td>GPU0</td>
<td>52.76937812</td>
<td>0.334865648</td>
</tr>
<tr>
<td>GPU0</td>
<td>48.60224942</td>
<td>out of memory</td>
</tr>
<tr>
<td>GPU0</td>
<td>50.43252043</td>
<td>out of memory</td>
</tr>
<tr>
<td>GPU0</td>
<td>49.95634021</td>
<td>out of memory</td>
</tr>
<tr>
<td>GPU1</td>
<td>50.19232587</td>
<td></td>
</tr>
<tr>
<td>GPU2</td>
<td>49.0351076</td>
<td></td>
</tr>
<tr>
<td>GPU3</td>
<td>51.06696428</td>
<td></td>
</tr>
</tbody>
</table>
4 GPUs vs 1 GPUs - Tesla V100 (32510MiB)

<table>
<thead>
<tr>
<th>1 GPU</th>
<th>4 GPU</th>
<th>Slowdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>4GB (20,000,000) * 4 = 16GB</td>
<td>0.603212162</td>
<td>0.169472176</td>
</tr>
<tr>
<td></td>
<td>2.017158832</td>
<td>0.169368701</td>
</tr>
<tr>
<td></td>
<td>1.266480964</td>
<td>0.169198073</td>
</tr>
<tr>
<td></td>
<td>4.328394731</td>
<td>0.172328982</td>
</tr>
<tr>
<td>6GB (30,000,000) * 4 = 24GB</td>
<td>0.25455562</td>
<td>0.266662563</td>
</tr>
<tr>
<td></td>
<td>1.09780012</td>
<td>0.25425929</td>
</tr>
<tr>
<td></td>
<td>3.405360669</td>
<td>0.263795581</td>
</tr>
<tr>
<td></td>
<td>2.618192345</td>
<td>0.254559077</td>
</tr>
<tr>
<td>9GB (40,000,000) * 4 = 36GB</td>
<td>0.334865648</td>
<td>0.344755277</td>
</tr>
<tr>
<td></td>
<td>out of memory</td>
<td>0.337464371</td>
</tr>
<tr>
<td></td>
<td>out of memory</td>
<td>0.335592131</td>
</tr>
<tr>
<td></td>
<td>out of memory</td>
<td>0.33519815</td>
</tr>
</tbody>
</table>

- In worst case, single GPU is 25.4 times slower.
- Thrust API is fully asynchronous and the contention may have been occurred when we don't apply multi GPU.
- Streams are not adopted.
- Single GPU can HARDLY handle no more than 36GB session data.
Speed up with multi GPU (more than 36GB)

120GB

<table>
<thead>
<tr>
<th>30GB (100,000,000) * 4 = 120GB (single thread)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU0 (thread0)</td>
</tr>
<tr>
<td>GPU0 (thread0)</td>
</tr>
<tr>
<td>GPU0 (thread0)</td>
</tr>
<tr>
<td>GPU0 (thread0)</td>
</tr>
<tr>
<td>total elapsed time:</td>
</tr>
</tbody>
</table>

GPU0 (thread0)	memory transfer hostToDevice	121.275596159 sec
GPU1 (thread1)	reduce_by_key	1.223066522 sec
GPU2 (thread2)	memory transfer deviceToHost	44.010355884 sec
GPU3 (thread3)	hashmap insertion	0.051888012 sec
total elapsed time:	103m19.728s (x1.71)	

Total: 720GB: (177-103) * 6 = 384minutes speedup

It is estimated that for coping with 720GB (3600,000,000 session data), Multi CPU can speed up the histogramming by ranging from 450 to 520 minutes.
Insights: 86,400,000 and 5–7 Billion

- GPU fits the exploding universe of data.
- For the next decade, the universe of data will be exploding.
- Until after 5–7 Billion, 1 day is 86,400,000 msec.
 → Data density per 24 hour will be increasing.

- Reduction on CUDA GPUs will be more and more effective as the density of time-series data is increasing.

* "~ 5–7 Billion - End of the Sun" - The Space Book: From the Beginning to the End of Time: 250 Milestones in the History of Space & Astronomy (Sterling Milestones), Jim Bell
Conclusion and impressions
Multi GPU acceleration on the go

1. Elastic Stack
 - rsyslog
 - FileBeat
 - PA-7080
 - Kibana
 - Shards*36

2. Multi-GPU server
 - CPU
 - RAM
 - GPU
 - GPU
 - GPU
 - GPU
 - GPU
 - IN
 - OUT

3. Splunk
 - indexer
 - indexer
 - master
 - Search head

1664m32.441s
704m47.418s
476m41.308s
1440m (24 hours)!

132m34.298s(12.6x)
174m7.888s(4.04x)
12m34.706s(39.6x)

128 processes * 36 shards
< 512GB * 9

32-64 threads
< 64GB (RAM)

4-8 threads
< 32GB (GPU)

3374m (= 1634 + 704 + 976) / 318m (132 + 174 + 12) = 10.6 (x)
Explosion of the digital universe

"The universe is not complicated, there's just a lot of it."
- Richard Feynman

Choosing appropriate level of parallelism

If a algorithm cannot work with a training of a million examples, then the intuitive conclusion follows that it cannot work at all. However, it has become obvious that the algorithm using a huge dataset with a trillion items can be highly effective in tasks for which the algorithm using a sanitized (clean) dataset with a only million items is NOT useful.

REFERENCE[2]: Murray Shanahan, "The Technological Singularity"
GPU for human being – Via negatativa

"And then is heard no more: it is a tale told by an idiot, full of sound and fury, signifying nothing"
Macbeth - William Shakespeare

- Don't analyze the ghosts. Just filetr it out!
Conclusion

- I have reported our three years (painful) operational experience in deploying multi-GPU accelerated monitoring system of huge academic backbone network.

- Some arts of concurrency (huge pagination, bulk bitmasking, and tiled map-reduce) have been introduced.

- It turned out that multi GPU acceleration are essential for the sophistication of the workflow between Elastic stack and Splunk.
Thank you for listening!

https://github.com/RuoAndo/Usenix_LISA19