Five-sigma Network Events (and how to find them)

John O'Neil
Edgewise Networks
Halloween, 2018
Networks are Complex

- No one knows what's going on
• Or the new & unexpected 🎃
• ...and if it’s different, it might be bad. ☠

• Outlier — Improbable data point in the expected distribution 🐞
• Anomaly — Data point generated by a different distribution 👻
Mr. Splanky
“If you want something done right, do it yourself.”
— Charles-Guillaume Étienne
Using Python

- Interpretable pseudocode
- Mature libraries.
- Easy to install
- Fast enough 😊
Creating Tools for Outlier Detection

• Introducing a few tools written in Python
• Intended to answer interesting questions and scale well
• Easy to modify/improve to satisfy your curiosity
• A starting point for your own tools
• Code is available at:

http://github.com/EdgewiseNetworks/five-sigma
Discover Bad Things Before Big Problems

- Keep track of netflows across machines and across time
- Well enough to recognize unusual things
- But too much information
- And make it tunable
The amount of “spread” in a (usually Gaussian) distribution.

$5\sigma \approx 10^{-6}$

$3.29\sigma \approx 10^{-3}$
Project Overview

1. Create a feed of typical netflows
 - Based on real netflows but anonymized
 - Format: \textit{timestamp, src_ip, src_port, dest_ip, dest_port, flow_count}

2. Create a consumer for these netflows.

3. Create a number of consumer tools to track interesting statistics.
 - Standard deviations
 - Update period
Examples Of Useful Information

1. Does an IP address keep scanning for new open ports?
2. Did an IP address suddenly get a lot busier than it’s ever been in the past?
3. Did an IP address suddenly get a lot busier than any other IP address?
4. Shouldn’t this IP address have stopped doing new things by now?
Tools To Use: Sketching & Streaming

• Lots of data to keep track of
• But we're only interested in certain aspects of it
 - Set cardinality — HyperLogLog
 - Incremental means & standard deviations
 - Online linear regression
• Make big data into small data
Other Examples of Approximate Probabilistic Sketches

- Bloom Filter (set membership)
- Count-Min Sketch (counting items)
- MinHash (set intersection)
- Locality-Sensitive Hashing (LSH: nearest neighbors)
- Q-digest/T-digest (quantile distribution — MORE ABOUT THIS LATER)
Q: Does an IP address keep scanning for new open ports?

Contains: \{IP_address : HyperLogLog\} map
 Each HLL counts distinct IP:port destinations.

At each period:
 mean, sigma = Stdev(hll.cardinality() for every HLL)
 For each IP_address & HLL :
 if HLL.cardinality() > N sigmas above the mean:
 report it.
Q: Did an IP address suddenly get a lot busier than it’s ever been in the past?

Contains:
{IP_address : HyperLogLog} — periodCardinalityMap
 Each HLL counts distinct IP:port destinations over all time.
{IP_address : StdDev} — periodStatisticsMap
 Each StdDev incrementally calculates means and stdevs.

At each period:
 For each IP_address & HLL & StdDev:
 currCount = HLL.cardinality()
 mean, sigma = StdDev.getMeanAndStdev()
 if currCount > N sigmas above its mean:
 report it.
 HLL.clear()
 StdDev.add(currCount, current_period)
Q: Did an IP address suddenly get a lot busier than any other IP address?

Contains:
{IP_address : HyperLogLog} — periodCardinalityMap
 Each HLL counts distinct IP:port destinations in current period.

At each period:
 mean, sigma = Stdev(hll.cardinality() for every HLL)
 For each IP_address, hll:
 curr = hll.cardinality()
 if curr > N sigmas above the mean:
 report it.
 hll.clear()
• Assume an “exponential decay” of new IP:port contacts over time

• We know how many we’ve seen, but not how many are left.

• Can we estimate N_{rem} given N_{obs}? Some calculus later ... why yes, we can.

$$N_{rem} \approx -slope(x_i) \times avg(x_i)$$
HostStabilizationDetector

Q: *Shouldn’t this IP address have stopped doing new things by now?*

Contains:

{IP_address : HyperLogLog} — cardinalityMap
 Each HLL counts distinct IP:port destinations over all time.

{IP_address : StdDev} — periodAverageMap
 Each StdDev incrementally calculates means and stdevs.

{IP_address : IncrLinReg} — IncrementalLinearRegressionMap
 Each StdDev incrementally calculates means and stdevs.

At each period:

For each IP_address, HLL, StdDev, IncrLinReg:

- \(N_{obs} = \text{HLL.cardinality()} \)
- \(\text{slope, intercept} = \text{IncrLinReg.estimate()} \)
- \(\text{avg} = \text{StdDev.getMean()} \)
- \(N_{rem} = -\text{slope} \times \text{avg} \)
- \(\text{reportIfDisagree}(N_{rem} < \text{tol}, \text{IP_address.frozen}) \)
- \(\text{IP_address.setFrozen}(N_{rem} < \text{tol}) \)
- \(\text{IncrLinReg, StdDev}.\text{update}(N_{obs}, \text{current_period}) \)
Demo Time!
But is it Gaussian?

• “Long-tail” or “fat-tail” distributions?
• Try power law or log-linear fitting
 • And many others?
 • But this can get complicated….
• Replace StdDev with tdigest.TDigest
Conclusions

• Without the agonizing pain
• Python data science tools FTW
• Cool sketching & streaming data structures
• “A little learning is a dangerous thing”
 ... and a little statistics is even better!
• Only the beginning — lots of room for improvement
The End
Thanks for attending!

http://github.com/EdgewiseNetworks/five-sigma

Suggested questions

1. How do I install Python, again?
2. What can I do with flow_counts in my netflows?
3. Show me the calculus for estimating N_{rem}!
4. So, what is the real statistical distribution of that data?
5. How does HyperLogLogLog work?