
Confidential Use Only – Do Not Share

INFRASTRUCTURE

Production Engineer

The History of Logging @ Facebook
(Abridged)

KC Braunschweig

• Facebook Production Engineer since 2012
• OS & Config Management (Chef) 2012-2015

• Scribe 2015 -2018

Who Are You?

• Reference links at the end of the slides

#movefast

Anyone remember 2007?

• Hannah Montana tour goes on sale
• Ticketmaster LLC v. RMG Techs. Inc.

• Someone might try to abuse your app for their own gain

• You may have to defend your app in court

• Your logs might impact how you charge customers
• Compliance requirements?

Anyone remember 2007?
Who cares about logging anyway?

Logging at Ticketmaster in 2007

syslog syslog storage
appliance tail {perl}

network nfs

Ticketmaster

• The industry in 2007
• 2007 -2010 – Open Source Scribe
• 2010-2015 – Scribe on HDFS
• 2015-2018 – Scribe on LogDevice

Agenda

2007 -2010 Open Source Scribe

• scribed – c++ thrift server
• Scribe open sourced 2008

• now archived L

• Scribe Tech Talk 2/27/2009
• Robert Johnson & Anthony Giardullo

Scribe 2007 -2010

Scribe 2007 -2010

syslog syslog storage
appliance tail {perl}

network nfs

Ticketmaster

Scribe 2007 -2010

syslog syslog storage
appliance tail {perl}

network nfs

scribed scribed storage
appliance tail {perl}

php?
network nfs

Ticketmaster

Facebook

Scribe 2007 -2010

syslog syslog storage
appliance tail {perl}

network nfs

scribed scribed storage
appliance tail {perl}

php?
network nfs

Ticketmaster

Facebook

So what’s different?

• ScribeD -> ScribeD -> NetApp Filer
• Should this be a diagram?
• How is this different from Syslog?

Logging in 2008 @FB

• Unix 101 - Do one thing and do it well
• Implications

• Scribe is a transport layer

• Never inspect or manipulate the payload

• A log is a series of newline terminated strings, but that doesn’t matter

Scribe 2007 -2010

2010-2015 Scribe on HDFS

Scribe 2007 -2015

scribed scribed storage
appliance

nfsnetwork

Scribe 2007 -2015

scribed storage
appliance

scribed

Scribe 2007 -2015

scribed

scribed

scribed
(fan-in) scribed storage

appliances

• Hadoop – big data ecosystem
• HDFS – hadoop distributed filesystem

• Patterned after Google File System paper

• Hive – SQL like queries on top of HDFS
• Originated at Facebook

Meanwhile… ”big data”

Scribe 2007 -2015

scribed

scribed

scribed
(fan-in) scribed HDFS

Scribe 2007 -2015

scribed

scribed

calligraphus
(java) HDFS

Scribe 2007 -2015

scribed

scribed

calligraphus
(java) HDFS

Scribe 2007 -2015

scribed

scribed

calligraphus
(java) HDFS tail?

Scribe 2007 -2015

scribed

scribed

calligraphus
(java) HDFS ptail

Scribe 2007 -2015

scribed

scribed

calligraphus
(java) HDFS ptail

(here be dragons)

Scribe Ecosystem in 2015

scribed calligraphus HDFS ptail

scuba

stylus

swift

puma

hive loader

Stream
Processing

Scribe Ecosystem in 2015

scribed

“Scribe service”

hive loader ptail

Scribe Ecosystem in 2015

scribed

scribe backend
clusters

(calligraphus/HDFS)

hive loader ptail

Not pictured:
• Category registration
• Blacklisting
• Sampling
• more

Scribe Ecosystem in 2015

Region 1 Region 2

scribed scribed

scribe backend
clusters

(calligraphus/HDFS)

hive loader ptail

scribe backend
clusters

(calligraphus/HDFS)

Confidential Use Only – Do Not Share

Prineville, OR

Los Lunas, NM

Papillion, NE

Fort Worth, TX

Forest City, NC

Altoona, IA Clonee, Ireland

Luleå, Sweden

Odense, Denmark

Scribe Ecosystem in 2015
Hitting limitations

• Scribe writes hundreds of GB/s with thousands categories
• Scary growth rates -> we need to scale 10x
• Scaling metadata was harder than scaling writes

• Mitigated with “scopes” but not solved

• Streaming was increasingly important
• Built on ptail (a hack)

• HDFS support was being deprecated inside Facebook

• Logdevice
• Started early 2013

• Open sourced 2018

• HDFS is a distributed filesystem we used to store logs
• LogDevice is a distributed log system

Meanwhile…
Enter LogDevice

Meanwhile…
In LogDevice and the industry

• Logs get an explicit definition
• A log is a series of newline terminated strings

• A log is a record-oriented, append-only, trimmable stream

• The Log: What every software engineer should know about real-time data's
unifying abstraction (Jay Kreps)

• No problem for Scribe’s data model!

• Streaming is first class
• Built in trimming (by time or size)
• Built in transport encryption
• Supported by our own dev team, dedicated to our use case
• Distributed metadata (no Namenodes)

Meanwhile…
Enter LogDevice

2015 -2018 Scribe on LogDevice

Scribe Ecosystem with HDFS

scribed calligraphus HDFS ptail

scuba

stylus

swift

puma

hive loader

Scribe Ecosystem with LogDevice

scribed calligraphus ptail

scuba

stylus

swift

puma

hive loader

LogDevice

Scribe Ecosystem with LogDevice

scribed calligraphus ptail

scuba

stylus

swift

puma

hive loader

LogDevice

Write-side
migration

Scribe Ecosystem with LogDevice

scribed ptail

scuba

stylus

swift

puma

hive loader

LogDevice

Write-side
migration

scribex router

• Write-side constraints
• Thrift

• FB service discovery & routing

• Scopes used to scale metadata

Scribe on LogDevice 2015 -2018
Migration Plan

• Write-side constraints
• Thrift

• FB service discovery & routing

• Scopes used to scale metadata

• Use scopes to migrate by category
• Independent ”scribe” clusters
• We can even double write*

Scribe on LogDevice 2015 -2018
Migration Plan

Scribe Ecosystem with LogDevice

scribed ptail

scuba

stylus

swift

puma

hive loader

LogDevicescribex router

Scribe Ecosystem with LogDevice

scribed scribex router

scuba

stylus

swift

puma

new hive
loader

LogDevice

Reduce
complexity

ptail

Scribe Ecosystem with LogDevice

scribed ptail

scuba

stylus

swift

puma

LogDevice

Read-side
migration

scribex router

new hive
loader

Scribe Ecosystem with LogDevice

scribed

scuba

stylus

swift

puma

LogDevice

Read-side
migration

scribex router ztail

new hive
loader

• Read-side constraints
• Pipe interface
• ptail -f my_category | my_stream_app

• No one ever upgrades

Scribe on LogDevice 2015 -2018
Migration Plan

• Read-side constraints
• Pipe interface
• ptail -f my_category | my_stream_app

• No one ever upgrades

• Hide behind pipe interface
• Migrate using transparent, forced upgrades

• ptail-autoupgrader (binary is still just ptail)

Scribe on LogDevice 2015 -2018
Migration Plan

• New components: scribex router, ztail, LogDevice, hive loader
• Write code

• Migration Plan
• Leverage our constraints

• Productionize

Scribe on LogDevice 2015 -2018
A 6 month project you say?

Scribe on LogDevice 2015 -2018
Prototype implementations

scribex router
prototype complete

Write Rate
HDFS

LogDevice

Scribe on LogDevice 2015 -2018
Prototype implementations

Write rate at
project start

Write Rate
HDFS

LogDevice

Scribe on LogDevice 2015 -2018
Prototype implementations

ztail prototype
complete

Write Rate
HDFS

LogDevice

Scribe on LogDevice 2015 -2018
How long could it take to make a plan?

Ready for
production
scale test

Write Rate
HDFS

LogDevice

• The goalposts will move the longer a project goes on

Scribe on LogDevice 2015 -2018
How long could it take to make a plan?

• The goalposts will move the longer a project goes on
• Replacing a mature system is hard

• Feature specs are valuable but always incomplete

Scribe on LogDevice 2015 -2018
How long could it take to make a plan?

• The goalposts will move the longer a project goes on
• Replacing a mature system is hard

• Feature specs are valuable but always incomplete

• Put the new team oncall for the legacy system

Scribe on LogDevice 2015 -2018
How long could it take to make a plan?

Scribe on LogDevice 2015 -2018
Testing in prod

Production
scale tests
complete

Write Rate
HDFS

LogDevice

• End-to-end testing
• Question both systems

Scribe on LogDevice 2015 -2018
Testing in prod

• End-to-end testing
• Question both systems

• Migration testing
• How good is your test coverage?

• Cover every tailer option permutation?

• Cheat with empirical data

Scribe on LogDevice 2015 -2018
Testing in prod

• End-to-end testing
• Question both systems

• Migration testing
• How good is your test coverage?

• Cover every tailer option permutation?

• Cheat with empirical data

• Cheat smart
• Use Scuba to make the data manageable

• Batch similar use cases together

Scribe on LogDevice 2015 -2018
Testing in prod

Scribe on LogDevice 2015 -2018
This journey is 15% complete

Write Rate
HDFS

LogDevice

• Migration automation
• Ex: category owner communication, capacity checks, migration steps, etc

• Make writing tooling easy with reusable components

• Temporary is ok

• Integration with our monitoring and other systems

Scribe on LogDevice 2015 -2018
This journey is 15% complete

• Migration automation
• Ex: category owner communication, capacity checks, migration steps, etc

• Make writing tooling easy with reusable components

• Temporary is ok

• Integration with our monitoring and other systems

• Hackable configuration (configerator)

Scribe on LogDevice 2015 -2018
This journey is 15% complete

{"date": "20171009",
"categories": [

”pipe_finder",
"pipe_indexer",
”speedtrap_errors",

],}

Scribe on LogDevice 2015 -2018
Now we’re rolling

Write Rate
HDFS

LogDevice

Scribe on LogDevice 2015 -2018
Holiday pause

Write Rate
HDFS

LogDevice

Scribe on LogDevice 2015 -2018
Done and done

Write Rate
HDFS

LogDevice

Magic*

• Unix 101 – do one thing and do it well

Magic*
Layering is your friend

• Raw scribe – no structure, low dependency
• echo “foo” | scribe_cat test_category

Magic*
Layering is your friend

• Raw scribe – no structure, low dependency
• scribe_cat
• Ex: chef

Magic*
Layering is your friend

• Raw scribe – no structure, low dependency
• scribe_cat

• Ex: chef -> json -> scribe_cat -> scribe -> scuba

• No validation – good luck

Magic*
Layering is your friend

chef handler
Mixlib::ShellOut.new(

'/usr/local/bin/scribe_cat chef_stats’,
:input => Chef::JSONCompat.to_json(stats)

)

• Our old friend syslog
• Imposed schema

Magic*
Layering is your friend

• Our old friend syslog
• Imposed schema, isolate dependencies

• omscribe

Magic*
Layering is your friend

rsyslog.conf
action(type="omprog"

binary="/usr/local/bin/omscribe"

• Our old friend syslog
• Imposed schema, isolate dependencies

• omscribe

• Deal with it downstream
• syslog -> omscribe -> scribe -> puma/stylus

Magic*
Layering is your friend

rsyslog.conf
action(type="omprog"

binary="/usr/local/bin/omscribe"

• Facebook applications
• ScribeClient libraries

• Custom integration
• As much structure as the developer wants

• Manage schema requirements yourself

Magic*
Layering is your friend

• Facebook applications
• ScribeClient libraries

• Custom integration
• As much structure as the developer wants

• Manage schema requirements yourself

• Adding new destinations requires new schema management
• Thousands of engineers have to know what they’re doing
• System-wide optimization is hard

Magic*
Layering is your friend

• Full structured logging
• logger - schema by config, destination(s) by config, automatic validation

• configerator - schema distribution

Magic*
Layering is your friend

• Full structured logging
• logger - schema by config, destination(s) by config, automatic validation

• configerator - schema distribution

• Magic
• app -> logger -> JSON -> ScribeClient -> Scribe -> Scuba

Magic*
Layering is your friend

• Full structured logging
• logger - schema by config, destination(s) by config, automatic validation

• configerator - schema distribution

• Magic
• app -> logger -> JSON -> ScribeClient -> Scribe -> Scuba

• Scuba JSON is inefficient, let’s change it!

Magic*
Layering is your friend

• Full structured logging
• logger - schema by config, destination(s) by config, automatic validation

• configerator - schema distribution

• Magic
• app -> logger -> JSON -> ScribeClient -> Scribe -> Scuba

• Scuba JSON is inefficient, let’s change it!

• app -> logger -> thrift -> ScribeClient -> Scribe -> Scuba

• Transparent for hundreds of apps

• Transparent for Scribe

Magic*
Layering is your friend

• Follow the Unix Philosophy
• Build complex features by layering simple components
• Your spec will be incomplete and take longer than you think
• Leverage your constraints
• Make tools easy to build to make them easy to throw away
• Sometimes a hack is good enough

Conclusions

Thank you

Questions

• Facebook Thrift
• https://code.fb.com/open-source/under-the-hood-building-and-open-sourcing-fbthrift/

• Ticketmaster vs. RMG Technologies
• https://en.wikipedia.org/wiki/Ticketmaster,_LLC_v._RMG_Technologies,_Inc.

• Scribe Tech Talk 2/27/2009
• https://www.facebook.com/Engineering/videos/650882334523/

• Open Source Scribe
• https://github.com/facebookarchive/scribe

• Hadoop Ecosystem
• https://en.wikipedia.org/wiki/Apache_Hadoop

• https://en.wikipedia.org/wiki/Apache_Hive

• The Log: What every software engineer should know about real-time data's unifying abstraction (Jay Kreps)
• https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

Reference Links

• Realtime Data Processing at Facebook
• https://research.fb.com/publications/realtime-data-processing-at-facebook/

• Open Source LogDevice
• https://code.fb.com/core-data/logdevice-a-distributed-data-store-for-logs/

• https://logdevice.io/

• Rsyslog omprog module
• https://www.rsyslog.com/doc/v8 -stable/configuration/modules/omprog.html

• Configerator – Holistic Configuration Management at Facebook
• https://research.fb.com/publications/holistic-configuration-management-at-facebook/

Reference Links

