Scalable Online Analytics for Monitoring

LISA15, Nov. 13, 2015, Washington, D.C.

Heinrich Hartmann, PhD, Chief Data Scientist, Circonus
I’m Heinrich

Heinrich.Hartmann@Circonus.com

- From Mainz, Germany
- Studied Math. in Mainz, Bonn, Oxford
- PhD in Algebraic Geometry
- Sensor Data Mining at Univ. Koblenz
- Freelance IT consultant
- Chief Data Scientist at Circonus

@HeinrichHartman(n)
Circonus is ...

- monitoring and telemetry analysis platform
- scalable to millions of incoming metrics
- available as public and private SaaS
- built-in histograms, forecasting, anomaly-detection, ...
This talk is about...

I. The Future of Monitoring

II. Patterns of Telemetry Analysis

III. Design of the Online Analytics Engine ‘Beaker’
Part I - The Future of Monitoring
Monitor this:

- 100 containers in one fleet
- 200 metrics per-container
- 50 code pushes a day
- For each push all containers are recreated

The “cloud monitoring challenge” 2015

@HeinrichHartman(n)
Line-plots work well for small numbers of nodes

CPU utilization for a DB cluster. Source: Internal.
... but can get polluted easily

CPU utilization for a DB cluster. Source: Internal.
“Information is not a scarce resource. Attention is.”

Herbert A. Simon
Store Histograms and Alert on Percentiles

CPU Utilization of a db service with a variable number of nodes.

@HeinrichHartman(n)
Anomaly Detection for Surfacing relevant data

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>check_cnt</td>
<td>1.00</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>check_cnt</td>
<td>305.00</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>checks_run</td>
<td>5.95k</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>checks_run</td>
<td>88.77k</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>default_queue_threads</td>
<td>10.00</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>default_queue_threads</td>
<td>10.00</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>feed_bytes</td>
<td>96.64k</td>
</tr>
<tr>
<td>Chicago, IL, US selfcheck</td>
<td>feed_bytes</td>
<td>35.77k</td>
</tr>
</tbody>
</table>

Mockup of an metric overview page. Source: Circonus
Part II - Patterns of Telemetry Analysis
Telemetry analysis comes in two forms

Online Analytics
- Anomaly detection
- Percentile alerting
- Smart alerting rules
- Smart dashboards

Offline Analytics
- Post mortem analysis
- Assisted thresholding

Stream Processing

‘Big Data’
New Components in Circonus

- Beaker
- Bunsen
Beaker & Bunsen in the Circonus Architecture
Pattern 1: Windowing

windows = window(y_stream)

def results():
 for w in windows:
 yield z = method(w)

Examples

- Supervised Machine Learning
- Fourier Transformation
- Anomaly Detection (etsy)

Remarks

- Tradeoff: window size rich features vs. memory
- Tradeoff: overlap latency vs. CPU
Pattern 3: Processing Units

```
processing_unit = {
    state = ...
    update = function(self, y) ... end
}
```

Example

- Exponential Smoothing
- Holt Winters forecasting
- Anomaly Detection (Circonus)

Remarks

- Fast updates
- Fully general
- Cost: maintains state

@HeinrichHartman(n)
A Processing Unit for Exponential Smoothing

local q = 0.9
exponential_smoothing = {
 s = 0,
 update = function(self, y)
 self.s = (y * q) + (self.s * (1 - q))
 return self.s
 end
}

For

Exponential smoothing applied to a dns-duration metric

@HeinrichHartman(n) More examples on http://heinrichhartmann.com/.../Generative-Models-for-Time-Series
Processing units are convenient

- Primitive transformation are readily implemented: Arithmetic, Smoothing, Forecasting, ...
- Fully general. Allow window-based processing as well
- Composable. Compose several PUs to get a new one!
Circonus Analytics Query Language

- Create your own customized processing unit from primitives
- UNIX-inspired syntax with pipes ‘|’
- Native support for histogram metrics
CAQL: Example 1 - Low frequency AD

Pre-process a metric before feeding into anomaly detection

```
metric:average(<>) | rolling:mean(30m) | anomaly_detection()
```
CAQL: Example 2 - Histogram Aggregation

Histograms are first-class citizens

```
metric: average(<uuid>) | window: histogram(1h) | histogram: percentile(95)
```
Part III - The Design of the Online Analytics Engine ‘Beaker’
Beaker v. 0.1: Simple stream processing

1. Read messages from a message queue
2. Execute a processing unit over incoming metrics
3. Publish computed values to message queue

Beaker: Basic Data Flow
Challenge 1: Rollup metrics by the minute

- Metrics arrive asynchronously on the input queue
- PUs expect exactly one sample per minute
- Rollup logic needs to allow for
 - late arrival, e.g. when broker is behind
 - out of order arrival
 - errors in system time (time-zones, drifts)
Consequence: No real-time processing in Beaker

- Rolling up data in 1m periods causes an average delay of 30sec for data processing.
- Real-time threshold-based alerting still available.
- Approach: Avoid rolling up data for stateless PUs.
Challenge 2: Multiple input slots

Beaker: Logical Data Flow

@HeinrichHartman(n)
Challenge 3:
Synchronize roll-ups for multiple inputs is tricky
Challenge 4: Fault Tolerance

Definition (Birman): A service is **fault tolerant** if it tolerates the failure of nodes without producing wrong output messages.

Failed nodes must be able to recover from a crash and rejoin the cluster.

The time to recovery should be as low as possible.

@HeinrichHartman(n)
Source: K. Birman - Reliable Distributed Systems, Springer, 2005
Beaker v0.5:

- Automated restarts
 a. Service Management Facilities (svcadm) in OmniOS
 b. systemd or watchdogs in Linux

- But, recovery can take a **long** time
 State has to be rebuilt from input stream.

- Need a way to recover faster from errors:
 a. Persist processing unit state (software updates!)
 b. Access persisted metric data

@HeinrichHartman(n)
Beaker v. 0.5: Use db to rebuild state on startup
Challenge 5: High Availability

Definition (Birman): A service is **highly available** it continues to publish valid messages during a node failure after a small reconfiguration period.

For Beaker we require a reconfiguration period of less than 1 minute. In this time messages may be delayed (e.g. 30sec) and duplicated messages may be published.

Source: K. Birman - Reliable Distributed Systems, Springer, 2005
Beaker v. 0.5 -- HA Cluster

On Failover: Master election

@HeinrichHartman(n)
Challenge 6: Scalability

Beaker needs to scale in the following dimensions

- Number of processing units up to an unlimited amount.
- In the number of incoming metrics up to ~100M metrics.
Beaker v.0.6 -- Multiple - HA Clusters

Beaker HA Cluster I (5 slaves)
- BI-M
- BI-S1
- ...
- BI-S5

Beaker HA Cluster II (3 slaves)
- BII-M
- BII-S1
- ...
- BII-S3

Beaker HA Cluster III (1 slave)
- BIII-M
- BIII-S1
- ...
- BIII-S2

Meta Service

Msg Broker

Snowth db

@HeinrichHartman(n)
Done! Great. This works...
Can we do better?
Divide Beaker into multiple services

Avoid master election in processing service, by allowing duplicates

Upside: Only the processing service needs to scale out
Scaling the Processing Service is simplified

- No rollup logic in workers
- All workers publish messages
- No failover logic necessary
- Replicate each PUs on multiple workers

- No crosstalk between nodes ($\kappa = 0$ in USL).

@HeinrichHartman(n)
Benchmark results on prototype

- PU type: anomaly_detection
 PU count: 100
 Throughput: 15 kHz

- PU type: anomaly_detection
 PU count: 10k
 Throughput: 4.2 kHz

Machine: 6-core Xeon E5 2630 v2 at 2.6 GHz
Conclusion

- Stateful processing units allow implementation of next generation of monitoring analytics
- Use CAQL to build your own processing units
- Service orientation facilitates scaling
- Beaker will be out soon
Credits

Joint work with:

- Jonas Kunze
- Theo Schlossnagle

Image Credits:

Indian truck, by strudelt, CC-BY, https://commons.wikimedia.org/wiki/File:Truck_in_India_-_overloaded.jpg

@HeinrichHartman(n)