Parallelization Primitives for Dynamic Sparse Computations

June 24, 2013

Tsung-Han Lin, Steve Tarsa, and H.T. Kung

HotPar’13
Dynamic Sparse Computations

• **Problem:** we want to parallelize sparse computations where the nonzero variables are identified only at run time

• Important for many applications in *signal processing* and *machine learning*
Dynamic Sparse Computations

Example 1: Compressive Sensing Recovery

- **Recover** sparse signals from dense compressed measurements
Compressive Sensing Recovery Example: Dynamic MRI

- 3D signal to be recovered is large
 - E.g., with 40 100x100 MRI time frames; signal size is 400K

[Lustig 2008]
Dynamic Sparse Computations

Example 2: Sparse Coding

- **Extract** sparse representations based on predefined/learned dictionaries

Representing image patches as linear combinations of a few low-level features
Sparse Coding Example: Convolutional Neural Networks

• Learning high-level features requires huge datasets for training
 – E.g., Google trains face detector using 10 million 200x200 images

[Image of convolutional neural network diagram]

Feature Extraction $\Phi(x)$

[Yu 2012]
A Canonical Example of Dynamic Sparse Computation: Solving Under-constrained Linear Systems

Given \mathbf{x} and \mathbf{D}, infinitely many solutions for \mathbf{z}

Suppose \mathbf{D} is well-behaved (e.g., satisfies RIP), we can recover the correct \mathbf{z} by minimizing $\|\mathbf{z}\|_1$

Efficient iterative algorithms, such as orthogonal matching pursuit (OMP), are available for recovering \mathbf{z}
OMP for Sparse Recovery

- OMP is an iterative algorithm, which is greedy, simple, fast
- It iteratively refines the sparse solution vector
 - **Outer loop** identifies nonzero unknowns and reduces the problem to be over-constrained
 - **Inner loop** estimates values by solving the over-constrained system via, e.g., least squares

\[x = \begin{bmatrix} D \end{bmatrix} \]

Columns corresponding to nonzero unknowns

Estimated nonzero unknowns
Parallelizing OMP: Ping-Ponging on a Bipartite Graph

$D^T x$ = Dz

D is the adjacent matrix of the graph
Parallelizing OMP:
Splitting Graph to Multiple Machines
Ping-Ponging in Outer Loop

Compute a “score” for every z_i (highlighted) to identify nonzeros
Ping-Ponging in Inner Loop

Select the nonzeros and compute their values using the corresponding subgraph (highlighted)
Two Parallelization Primitives for efficient Parallel Execution of Dynamic Sparse Computation

Challenge: For efficiency we must limit computation only to the subgraph corresponding to nonzero unknowns, but we don’t know them at the outset; they are determined at run time.

We propose the following two primitives for the efficient identification of these nonzeros in parallel:

- **Statistical barrier** to identify nonzero unknowns without having to wait for stragglers
- **Selective push-pull** to focus computations only on the selected subgraph
Statistical Barrier

- Continue computation without waiting for the last straggler

- Finishing a large fraction of z_i is likely to capture sparse nonzeros

- Algorithm is robust to missing values, which can be fixed in the next iteration

E.g. Leave the barrier when 80% of z_i complete
Selective Push-Pull

- Support computation on dynamically selected subgraph

(1) Select a subset of active z_i
(2) z_i compute and push update to x_i
(3) x_i compute using incoming updates
(4) z_i pull updates and continue computation

No edge selection needed!
Performance Gains of Selective Push-Pull on EC2

- Built selective push-pull on GraphLab
- Vary sparse recovery problem size but with constant sparsity

Static graph

- Computation time grows due to unnecessary computation
- Computation time remains constant for constant subgraph size

Selective push-pull

- OMP inner loop computation time (sec)
- Problem size of sparse recovery (N)
- 1 Machine
 - 10^4
 - 10^5
 - 10^6
- 2 Machines
 - 10^4
 - 10^5
 - 10^6
- 4 Machines
 - 10^4
 - 10^5
 - 10^6
- 8 Machines
 - 10^4
 - 10^5
 - 10^6

GraphLab

- Vary sparse recovery problem size but with constant sparsity
Performance Gains of Statistical Barrier in Simulation

Straggler stats from MS’s Bing cluster: 25% jobs see high prop. of stragglers, up to 10x median completion time

- 95% Barrier trims worst stragglers → improves average time by 2.5x, and worst case by 4x over rigid
- 75% is too aggressive, and extra iterations hurt
Parallel Ping-Pong Applicable to Other Applications, e.g., Dictionary Learning for Feature Extraction

- Learn an **overcomplete** dictionary that can represent data vectors using only a few atoms
- **K-SVD** alternates between optimizing \(Z\) and \(D\)
Express Dictionary Learning Using Graphical Model

Dictionary atoms

Sparse representation for every data vector

\[X \approx \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix} \begin{bmatrix} z_1 & z_2 & z_3 & \cdots & z_p \end{bmatrix} \]
Express Dictionary Learning Using Graphical Model

Sparse representation for every data vector

- **Update Z**: compute sparse code for every data vector
- **Update D**: for a given atom, optimize using associated data vectors (has nonzero coefficient for the atom)
Express Dictionary Learning Using Graphical Model

Dictionary atoms

Sparse representation for every data vector

- **Update Z**: compute sparse code for every data vector
- **Update D**: for a given atom, optimize using associated data vectors (has nonzero coefficient for the atom)

Statistical barrier to skip stragglers

Selective push-pull to activate only associated data vertices
Conclusion

• We have identified an important class of dynamic sparse computations on bipartite graphs
• This class of computations can benefit from a flexible execution model supported by two new primitives
 – Statistical barrier
 – Selective push-pull
• There are important applications for machine learning and signal processing
Express Dictionary Learning Using Graphical Model

Dictionary atoms

Sparse representation for every data vector

- **Update** z: compute sparse code for every data vector
- **Update** d: for a given atom, optimize using associated data vectors (has nonzero coefficient for the atom)

$X = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_m \end{bmatrix}$

Statistical barrier to skip stragglers

Selective push-pull to activate only associated data vertices
for every edge

gather();
end

apply();

for every edge

scatter();
end

for every edge

gather();
end

apply_1();

apply_1();