Towards illuminating a Censorship Monitor’s Model to Facilitate Evasion

Sheharbano Khattak*, Mobin Javed*, Philip D. Anderson* and Vern Paxson**

* Independent Researcher
♦ U.C. Berkeley
* International Computer Science Institute
In the next 19.5 mins..

I’m going to talk about:

• **How to Reverse Engineer a Censor Monitor:**
 – Exhaustively probing *stateful onpath* censors to infer information about various elements

• **And an exemplar:**
 – Evasion vulnerabilities we found in the Great Firewall of China
A look at the Evasion landscape

Existing evasion tools:

<table>
<thead>
<tr>
<th>=> Clayton et al. (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- ignore RSTs</td>
</tr>
<tr>
<td>=> WestChamber (2010)</td>
</tr>
<tr>
<td>- send fake RSTs</td>
</tr>
<tr>
<td>⇒ Brdgrd</td>
</tr>
<tr>
<td>- Exploit lack of TCP reassembly for TLS negotiations</td>
</tr>
</tbody>
</table>

Our Work:

- A systematic investigation of evasion opportunities
- **Goals:**
 - Require *expensive* changes to system’s basic model to remedy vulnerabilities
 - Require only client-side or server-side traffic manipulation
Design of a Censor

- Tradeoff between completeness of analysis and scalability.
- Same problem of ‘traffic reconstruction’ as NIDS.

We draw our work mainly on the body of knowledge established by the NIDS community.
Probing a Censor to infer model

A censor is a black-box, but with a few observables!
Probing a Censor to infer model

A censor is a black-box, but with a few observables!

What to Censor?
- Probe packets to send

Analysis Model Infer!

How to execute censorship?
- Response packets to look for
Probing Methodology

- Test sensitive keywords (for e.g. Falungong) in IP/TCP segment/ HTTP request / HTTP Reply
- GFW censors only once it has seen a complete HTTP request.
- Three RST packets with varying gaps in sequence numbers
Model Elements to Probe

1. TCB Creation
2. IP/TCP Reassembly
3. State Management
4. TCB Teardown
5. Protocol Message Interpretation
 (Both network and higher layers)

For this work we focused on stateful on-path monitors
1. TCB Creation

• Three-way handshake or partial handshake?

- **Test 1a**: SYN but no responding SYN-ACK
- **Test 1b**: SYN-ACK but no initial SYN
- **Test 1c**: Both SYN and SYN-ACK

(In all three tests, trigger packets follow handshake packets)

• Evasion Vulnerabilities:
 – SYN Flooding
 – Unsynchronized monitoring
1. TCB Creation (2)

Unsynchronized monitoring illustration

Client

GFW

The Great Firewall of China

Server

- SYN (Initial Sequence Number=20, TTL =3
 Src. Port = 6700, Dst. Port = 7080)

- SYN (Initial Sequence Number=47, TTL =10
 Src. Port = 6700, Dst. Port = 7080)
2. IP/TCP Reassembly

• How to resolve ambiguous cases of temporally separated overlapping fragments/segments?

 Example:

• Tested each of the 18 possible cases for ambiguous overlap.

• GFW prefers:
 – Original IP fragment for all cases except for one case
 – Subsequent TCP segments for a subset of cases
 – Lacks reassembly capability for other TCP segment cases
2. IP/TCP Reassembly

• How to resolve ambiguous cases of temporally separated overlapping fragments/segments?

Example: Time

To evade: Send sensitive keywords in overlapping fragments/segments that evade GFW’s reassembly policy !!
(For evasion to work, server must reassemble as expected.)

• GFW prefers:
 – Original IP fragment for all cases except for one case
 – Subsequent TCP segments for a subset of cases
 – Lacks reassembly capability for other TCP segment cases
3. State Management

• How long and how much state to keep?

• Send increasing amounts of time and volume of non-sensitive data prior to sensitive data

• GFW’s state-keeping capabilities:
 – Without “holes”: 10 hours (even with 1 GB+ worth of data)
 – With “holes”: 1 hour/1 KB
3. State Management

• How long and how much state to keep?

To evade: Exploit GFW’s buffering capabilities. DoS or cause it to evict state!!

• GFW’s state-keeping capabilities:
 – Without “holes”: 10 hours (even with 1 GB+ worth of data)
 – With “holes”: 1 hour/1 KB
4. TCB Teardown

• How to determine parties have torn down connection?

| Test 4a: require RST (A) from one party |
| Test 4b: require RST (A) from both parties |
| Test 4c: require FIN (A) from one party |
| Test 4d: require FIN (A) from both parties |

• GFW tears down on:
 – FIN/RST packet (even ones without ACK bit set).
5. Protocol Message Interpretation

- Does the censor perform protocol validation?
 - Does it respect what different header field/values mean?
 - Is it complete?
 - How does it deal with ambiguous messages?

- Layer-by-layer header walk trying out possible values of each header field

- Here we report only interesting ones
5. Protocol Message Interpretation

TCP Exemplars:

- GFW accepts packets with incorrect TCP checksums
- GFW accepts packets that lack ACK/ have wrong ACK
5. Protocol Message Interpretation

TCP Exemplars:

- GFW accepts packets with incorrect TCP checksums.
- GFW accepts packets that lack ACK/ have wrong ACK.

HTTP Exemplars (see paper for more):

- RFC Deviant HTTP Requests: Extra space between Request method and Request URI bypasses inspection

 GET /falungong.html HTTP/1.1

- GFW inspects only first 2K bytes into the request URI.
Cost of Fixing Evasion Bugs

TCB Creation

Protocol Message Interpretation

State Management

TCB Destruction

- Kill connections no longer monitored. Collateral Damage!

Mostly Easy
But trade off completeness for scalability

Requires inline normalization
Expensive!
Future Work

• Automated Model Extraction
 – For a given censor over time
 – New censors in new countries
 – Assessment of Analysis Inconsistencies

• Evasion Tools
Q & A!