Speed-Breaker Early Warning System

Mohit Jain, Ajeet Pal Singh (JIIT Noida, India)
Soshant Bali, Sanjit Kaul (IIIT Delhi, India)
Overview

• Motivation
• Introduction
• Detection Methodology
• Data Set
• Evaluation
• Discussion
Motivation

• Speed-breakers reduce accidents
 – Reduce speed and increase safety

• Popular in many developing countries
 – Shortage of enforcement resources
 – India, Chile, Egypt, Ghana, Pakistan, etc.

• Can also cause accidents
 – Frequent reports of speed-breaker fatalities
 – Two wheelers: motorcycles, scooters
 – Last row of a bus
Motivation

From Reference [17]
Motivation

• Inconspicuous under special conditions
 – Night, Rain, Snow, Fog, etc.

• Warning signs/light
 – England DoT: must accompany lights
 – Guidelines ignored in developing countries

• Standard dimensions?
 – No, many different shapes
 – Transportation researchers consider unsafe

• Illegal speed-breakers
 – 4,536 in Bangalore
 – Some on national highways
 – Pakistan, Malaysia, Russia, etc.
Introduction

• Speed-breaker early warning system (SWAS)
 – Smartphone application
 – Downloads nearby speed-breaker locations
 – Warns when approaching one

• Populating the speed-breaker location database
 – Smartphone application collects accelerometer readings
 – When it detects a speed-breaker, reports location to server
 – Server examines reports from multiple phones before confirming

• Cost? Is it an affordable solution for developing world?
 – Android phones available for < $100 today, getting cheaper
 – Data plan? Store known speed-breaker locations locally
Main Contributions

• Algorithm for detecting speed-breakers
 – Feature vector, SVM, Decision Trees

• Amplitude vector has enough information
 – Previous work : GPS, magnetometer
 – No need for expensive reorientation

• Validated using an extensive data set
 – 678 Km of drive data from New Delhi, India
 – Several different vehicle types: cars, motorcycle, auto, etc.
 – Several different phones
 – 22 different drivers
Accelerometer Reorientation?

- Phone axes don’t always align with car’s axes

- Given a window of 3N accelerometer samples
 - Transform to a window of N amplitude vectors

\[a_i = \sqrt{x_i^2 + y_i^2 + z_i^2} \]
Detection Methodology

X-axis

Y-axis

Z-axis

Feature Extraction

Classification

Decision
Feature Vector

- Standard deviation, number of mean crossings, maximum mean crossing interval, ratio of standard deviations (previous, next)

\[\{2.622, 6, 0.399, 3.5744, 5.0066\}\]

\[\{0.34, 11, 0.245, 0.8812, 0.7729\}\]
Data Set

• At least two phones used in every drive
 – Measurer, Marker
 – Measurer: pant pocket, dashboard, car seat, etc.
 – Marker: in observer’s hands
 – Time synchronized

• Speed-breaker types
 – Type 1: 3 to 6 ft long, 5 to 10 inches high
 – Type 2: 1 to 2 ft long, 3 to 6 inches high
Data Set

- Total length: 678 Km of drive data
- Location: National Capital Region
- Vehicles
 - 219.5 Km in Auto Rickshaw
 - 40.15 Km in Cycle Rickshaw
 - 290.5 Km in Car
 - 53.6 Km in Motor Cycle
 - 74.1 Km in Bus
- 22 different drivers
Evaluation

- **K-fold cross validation**
 - If there are n speed-breakers in any drive
 - Randomly select n windows that don’t have any speed-breakers
 - Total of 2n labeled samples
 - Divide 2n labeled samples into k groups
 - Train with k-1 groups, test with 1 group
Evaluation

• Train and test using same type of vehicle
 – Motorcycle: phone in pocket, frequent stops, brake
 – Cycle-Rickshaw: poor/no suspension system
Discussion

• False alarm probability can be reduced further
 – Server only accepts locations reported by multiple users
 – Reject reports from vehicles known to have high false alarms, e.g., motor-cycle, cycle rickshaw

• Battery consumption
 – Continuous GPS monitoring increases battery consumption
 – Download locations of nearby speed-breakers
 – Estimate the drive time to nearest speed-breaker and stop GPS
 – Start monitoring GPS again after getting close to the speed-breaker

• Other applications
 – SWAS can be integrated with navigation systems (Garmin, mapmyindia, etc.)
 – Emergency vehicles delayed by 10 seconds per speed-breaker; If locations of illegal speed-breakers are known emergency vehicles can drive around them