n S
= S
00 ¢ S
o = o
— © 5
. 5 5
o C
O O
O S B
> S £
v 2 E
O a 8
(C 3 5
S)
o oo = &
= O S 3
<~ S| S
c Xl S«
o> 3 5 8
(@V]
Qo E S5 v
Sl 2 3
=l =2 o

Outline

= Introduction
= Log-stacking models
= Problems with stacking logs

= Solutions to mitigate log-stacking issues

SanJisk

Log-structuring

= Append data at the tail
= Maximized write throughput by aggregating small random writes to large sequential ones
= Easier storage management
— Free space management
= Fast recovery

— Good for transactional consistency

— Low overhead snapshots
= Flexibility on reclaiming space or data chunks

— Good for database systems that unmodified data could be grouped during GC process

W free space ———

SanJisk

Log-structuring - why on flash?

= Flash does not support in place update

— Erase is costly

= Asymmetric read/write performance

— Write is much slower than Read

= Operations are in a unit of page (4KB, 8KB)

— High overhead for small random |/O

block 0 block1 block 2
page O | page4d | page8
page 1 page 5 page 9
page 2 page 6 | page 10
page 3 page 7 | page 11

logging

— e.g.a512-byte write may consume a 4KB flash page

Log-structure is a better choice for flash memory!

SanJisk

Log-structuring - who?

database

e.g. change and access logging flash aware file systems, FTL

records logging e.g. data log, metadata log

logging system, pub/sub
everything is logged

Bubseribes

Delivers

4—

.

Publishes

Bubseribes

Delivers

.

SanJisk

Are more logs better?

Individual logging is optimized for performance

Individual logging provides better isolation

Multiple logs within one application/layer is even better
— Hot/cold data separation

— Easy metadata management

Multiple layers of logs?

SanJisk

Outline

= |ntroduction
= Log-stacking models
= Problems with stacking logs

= Solutions to mitigate log-stacking issues

SanJisk

Log-on-log models

Log Structured Application or Filesystem

I Crash Recovery I | Journaling | I Other Services
I Garbage Collection I I User Data
QLT | |

Log Segments
\ (size=N)

Data Append Point #1
Data Append Point #2

XAppend Point #3

Device Flash Translation Layer (FTL) Log

| Crash Recovery | Journaling | I

Other Services

Garbage Collection I I User Data

LTI]

Log Segments
Data Append Point #1 (size=1.5N)

Data Append Point #2

SanJisk

Log-on-log models

Log | Non-log log | Log
FTL Log FTL Log
Log
Log
FTL Log

SanJisk

Outline

= Introduction
= Log-stacking models
= Problems with stacking logs

= Solutions to mitigate log-stacking issues

SanJisk

10

Problems with stacking logs

= Increased write pressure

= Destroyed sequentiality
= Duplicated log capabilities
= Lack of coordination

— Application logs are not FTL aware

— FTLlog is not application aware

v

Flash logging

SanJisk

Experimental methodology

= A flash-aware file system — F2FS
— Upto6logs
— On top of a single log (one append point) SSD
= A log-on-log simulator
— Mimic a file system to device storage system
— Data placing, storage management, garbage collector

Upper log storage mediu

SanJisk

. Storage | Garbage | Metadat
virtual
1 Mgmt. | collector | a Mgmt.
logical _ _] write S -1 1/ interface
l . Lower log storage medium
physical ' | Storage | Garbage | Metadat
Mgmt. | collector | a Mgmt.

1 - Metadata footprint increase

= Each layer/log has its own metadata
= On-media metadata is increased — resulting in more writes to the device
= [n-memory metadata is increased — higher memory consumption

50,00 -

A500 -+
% AD.00
£%00 | Increased metadata results in reduced
£ 25.00 oy e
£ 2000 - woeaes | StOrage for user data and additional
@ 1500 - . .
2 1000 u f2fs-6logs writes which reduces endurance.

5.00 4 l -

0.00 -

Qt_ﬁg‘ "@} *:5‘\" ‘J’t‘ 6‘1‘
@{@s‘ @ob ’_Fo. =¥*°' &‘\6’” @Qbﬁ" 45;‘}‘ 4,95'

SanJisk 13

2 - Fragmented logs

= Mixed workload from logs and other traffic destroys
sequentiality

— Each log writes sequentially, but the device gets mixed workload, most
likely to be random

— Underlying flash-based SSD also writes its own metadata

Log1 Log 2 Log 3 Other non-log traffic

Application layer '

Flash layer

Multiple logs on a shared device results in random traffic seen by underlying device.

SanJisk

14

2 - Fragmented logs (cont.)

= Unaligned segment size

* Garbage collecting one upper segment results in data invalidation across multiple segments in
device log

* Matching segment sizes does not prevent data fragmentation

——

flash log \\\ @

dev_seg 1 dev_seg 2 dev_seg 3

Unaligned segment size results in fragmented device space
caused by garbage collection.

SanJisk

3 - Decoupled segment cleaning

= Without TRIM, data has different ‘validation’ view on each log layer
= Data could be moved multiple times across log layers
valid block invaIid block D free block

file system logs 7
device log 7W ﬁ;’
Segment 1 Segment 2

Uncoordinated garbage collection on each log destroys the sequentiality of data that
the application log intends to maintain, and leads to more flash writes.

Even with TRIM support, the sequentiality could hardly be guaranteed in the lower flash log.

SanJisk 16

Fragmented logs + decoupled cleaning

= A combined effect on the overall WA - TCWA
= Higher log ratio results in higher device WA

60GB random writes, 4K direct 10

random log fsys device erase GC data

dist # WGB WGB e
zipf.0.8 2 (12055 221.02 98.28 [1.82
zipf:0.8 121.08/ 267.88 144.58 \ 2.19

-]

6
T ®
zipf:1.1 2 122.05 222.78 37 4 98.52 1. Ql
zipf:1.1 6 122.53 277.10 493 152.35 2.24
uniform 2 96.32 137.94 188 39.96 1.41
uniform 6 96.42 141.25 195 43.15 1.45

<1% 4-32% 3-24%
More upper log results in higher device WA, and hence higher TCWA
San)isk

17

Outline

= Introduction
= Log-stacking models
= Problems with stacking logs

= Solutions to mitigate log-stacking issues

SanJisk

18

Methods for log coordination

= Smaller flash segment size is
better in terms of WA

= Total WA increases as lower

Turning slope: low_seg_size > up_seg_size

300 \\\\ log segment size increases
- jzz VAN et = Turning slope when _
= size MB low_seg_size > up_seg_size
Pl VNN _—
£ s.00
fn | L\ —
S \ NAXS -
fgu 3.00 ¥ —Up_8
§ 2.00 ' ///}/0/0/ ——up_16

g up_32
1.00
o 2 4 8 16 32 64 128 256 512

Lower log segment size MB

Tpce - like: upper/lower size ratio 90%

SanJisk

19

Methods for log coordination (cont.)

9.00

3.00
8.00 Upper log
__ segment 2.50
E 7.00 / size MB E //
()]
£ 500 /// / £ // /7’
—up_2 o) —_———
g 4.00 // / / :z A R E—
—up_ o
% 3.00 //// — Up_8 rgu 1.00
§ 2.00 //// —up_16 '.6
' ~ 7 7 -~ =
up_32 0.50
1.00
0.00 0.00
2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512
Lower log segment size MB Lower log segment size MB
upper/lower size ratio 90% upper/lower size ratio 70%

Total WA is a combined effect of capacity ratio, segment size ratio, GC frequency, and etc.

SanJisk

20

Methods for log coordination (cont.)

= Size coordination to reduce Total Combined WA - TCWA

— TCWA = (upper log WA) * (lower log WA)
— Capacity ratio
— Segment size ratio

— Tradeoff the space management and GC efficiency by adjusting upper log segment
size

= Coordinated GC activity
— Postpone the device log GC while the upper GC is active

— Avoid/minimize the same data to be moved multiple times

— Start multiple upper logs GC simultaneously

SanJisk

21

Collapsing logs

= Stacking logs is not always optimal for flash-based system

— Log coordination is less possible with multiple layers be involved

= Two approaches to collapsing logs
— NVMEFS (formerly called DirectFS): sparse space, atomic writes, PTRIM
— Object-based flash: breaking the standard block interface

SanJisk

22

Collapsing logs (cont.)

Metad%ta
mgmt.

aIFcR:%%Fon

Addr.
mapping

e

Crash
recovery

rogging/ |

journaling

[emeiblocker]

Metadata Space Addr.
mgmt. allocation mapping

Garbage Crash Atomic
collection| recovery | transaction

FTL-based flash memory
Metadata Space Addr.
mgmt. allocation | mapping
Garbage Crash FTL
collection | recovery Logging

SanJisk

Flash memory device

Eliminate redundant log layers

— Remove similar log
functionalities

Break the block interface
Keep the log capabilities in
only one layer

— File system layer with a
lightweight flash device
design

— FTL layer with a log-less file
system design

23

Conclusion

= Log structured system is designed to provide high throughput
— Combining small random requests to large sequential ones

= Multiple logs/append points in different system layers tends to provide better data and space
management

— hot/cold separation
= Stacking logs on another log achieves sub-optimal performance
— Lack of coordination on each layer mixes the traffic
= Log-on-log can perform better with improved coordination
— Size coordination, GC coordination
— File system support
= Collapsing logs — breaking the block interface
— NVMES: sparse space, atomic writes, PTRIM
— Object-based flash storage

SanJisk

24

San)isk

