Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments

Nikos Zacheilas, Vana Kalogeraki
Department of Informatics
Athens University of Economics and Business
Introduction

• Big Data era has arrived!
 • Facebook processes daily more than 500 TB of data
 • Twitter users generate 500M tweets per day
 • Dublin’s city operational center receives over 100 bus GPS traces per minute

• Wide range of domains
 – Traffic monitoring
 – Inventory management
 – Healthcare infrastructures

• More data than we can handle with traditional approaches (e.g. relational databases)

• Novel frameworks were proposed
 – Batch processing
 • Google’s MapReduce
 • IBM’s BigInsights
 • Microsoft’s Dryad
 – Stream processing
 • Storm
 • IBM’s Infosphere Streams
The MapReduce Model

• MapReduce [Dean@OSDI2004] was proposed as a powerful and cost-effective approach for massive scale batch processing

• Popularized via its open source implementation, Hadoop, is used by some of the major computer companies:
 – Yahoo!
 – Twitter
 – Facebook

• Intense processing jobs are broken into smaller tasks

• Two stages of processing map and reduce

 \[\text{map}(k_1, v_1) \rightarrow [k_2, v_2] \]

 \[\text{reduce}(k_2, [v_2]) \rightarrow [k_3, v_3] \]

• All \([k_2, v_2]\) intermediate pairs assigned to the same reduce task are called a reduce task’s partition
Processing Big Data with MapReduce Challenges

- Load imbalances due to skewed data
- Heterogeneous environments with heterogeneous processing capabilities
- Real time response requirements
 - 95% of Facebook’s MapReduce jobs have average execution time of 30 seconds [Chen@MASCOTS2011]

Youtube social graph application
Problem

Question: How can we efficiently schedule the execution of multiple MapReduce jobs with real-time response requirements?

Challenges:
- Maximize the probability of meeting end-to-end real-time response requirements
- Effectively handle skewed data
- Identify overloaded nodes
- Deal with heterogeneous environments
DynamicShare System

We propose DynamicShare a novel MapReduce framework for heterogeneous environments. Our approach makes the following contributions:

• New jobs’ execution times estimation model based on *non-parametric regression*
• Distributed least laxity first scheduling of jobs’ tasks to meet end-to-end demands
• Early identification of overloaded nodes through Local Outlier Factor algorithm
• Handling data skewness with two approaches:
 – Simple partitions’ assignment
 – Count-Min Sketch assignment

Nikos Zacheilas
The MapReduce Model

Map Phase

Reduce Phase

Partitioning

Split File

Split File

Split File

M

M

M

(k₁, v₁) (k₂, v₂)

(k₃, v₃) (k₄, v₄) (k₅, v₅)

(k₅, v₆) (k₆, v₇) (k₂, v₈)

(P.1) (k₁, [v₁]) (k₂, [v₂, v₈]) (k₃, [v₃]) (k₄, [v₄]) (k₅, [v₅, v₆]) (k₆, [v₇]) (k₃, [v₃])

(P.2) (k₅, [v₇])

(P.3) (k₄, [v₄])

(P.4) (k₆, [v₇])

(P.5) (k₃, [v₃])

R.1

R.2

R.3

Output

Output

Output

Nikos Zacheilas
DynamicShare Architecture

- DynamicShare comprises a single Master and multiple Worker nodes
- Master node
 - responsible for assigning map and reduce tasks to Workers under skewness and real-time criteria
 - monitor jobs performance
- Worker nodes
 - execute map/reduce tasks
 - report task progress
System Model

Each submitted job j comprises a sequence of invocations of *map* and *reduce* tasks. Each job j is characterized by:

- **Deadline**$_j$: the time interval, starting at job initialization, within which job j must be completed
- **Proj_exec_time**$_j$: the estimated amount of time required for the job to complete. Estimation is given by the following Equation: $Proj_exec_time_j = \max\{m_{i,t}, ..., m_{k,t}\} + \max\{r_{z,t}, ..., r_{l,t}\}$
- **Laxity**$_j$: the difference between **Deadline**$_j$ and **Proj_exec_time**$_j$, considered a metric of urgency for job
- **split_size**$_j$: the size of a split file

Each task t of job j has the following parameters:

- $m_{i,t}$, $r_{i,t}$: estimated execution times of map and reduce tasks in Worker i
- $cpu_{i,t}$, $memory_{i,t}$: average CPU and memory usage of task t in Worker i
DynamicShare: How it works?

1. **Execution Times Estimator**
 - **Job Arrival**
 - **Laxity Calculation**

2. **Task Distribution**
 - **Partitions’ Assignment**
 - **Monitor Center**

3. **TaskScheduler Laxity-Based Scheduling**
 - **Task Slots**

4. **Partitions’ Sizes**

5. **Monitor Thread**

6. **Laxity values**

7. **LOF**
Task Scheduling

1. Job Reception
2. Laxity Calculation
3. Task Distribution
4. Partitions’ Sizes
5. Task Slots
6. Laxity values
7. Monitor Center
8. Assignment
9. Task Scheduling

Nikos Zacheilas
Task Scheduling

• Given the Deadline_j and Proj_exec_time_j for job j, we compute the Laxity_j value with the following formula

$$\text{Laxity}_j = \text{Deadline}_j - \text{Proj_exec_time}_j$$

• Least laxity scheduling is a dynamic algorithm that allow us to compensate for queueing delays experienced by the tasks executing at the nodes

• TaskScheduler sorts jobs’ tasks based on the Laxity_j values. Tasks of jobs with the smaller laxity values will be closer to the head of the queue

• Scheduling decisions are made when:
 1. New tasks are assigned to the TaskScheduler’s
 2. Tasks finish or miss their deadlines
Estimating Task’s Execution Time

- Current solutions such as building job profiles or using debug runs are not adequate
- Works well for homogeneous environments
- What happens though in heterogeneous environments where multiple applications may share the same resources?
- Need to take into account the resource requirements (e.g., CPU, memory usage) of newly submitted tasks

\[\hat{x} = (\text{split_size}_j, \text{cpu}_{i,t}, \text{memory}_{i,t}) \]

\[m(\hat{x}) \rightarrow \text{Execution Times Estimator} \rightarrow m_{i,t} \]

- Approximate \(m(\hat{x}) \) function
 - Parametric regression considers the functional form known
 - Non-parametric regression makes no assumption (data-driven technique)
Estimating Task’s Execution Time

\[
\hat{m}(\tilde{x}) = \frac{1}{n} \sum_{i=1}^{n} W_i(\tilde{x}) \cdot y_i
\]

Execution Times Estimator

Past runs

<table>
<thead>
<tr>
<th>Vector</th>
<th>Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{x}_1)</td>
<td>(y_1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\tilde{x}_n)</td>
<td>(y_n)</td>
</tr>
</tbody>
</table>

Non-parametric Regression

Nikos Zacheilas

Use k closest in Euclidean distance past runs

k-Nearest Neighbor (k-NN) Smoothing

\[
\hat{m}(\tilde{x}) = \frac{1}{k} \sum_{i=1}^{k} W_i(\tilde{x}) \cdot y_i
\]
Identifying Overloaded Nodes

- Due to the dynamic behavior of the jobs, Workers’ performance may change rapidly. Need to quickly detect overloaded Workers.
- We consider overloaded nodes those that are assigned more tasks than their processing capabilities.
- **Key Observation:** *Laxity* values of these tasks will be left behind in relation to the tasks running in different nodes.
- **Solution:** Applied Local Outlier Factor algorithm (**LOF**) on the *laxity* values of the tasks of the same job that run on different Workers.

\[
LOF_l(lax_A) = \frac{\sum_{lax_B \in N_l(lax_A)} lr d_l(lax_B)}{|N_l(lax_A)| * lr d_l(lax_A)}
\]

- Compares reachability density of a point with each neighbors.
Handling Skewed Data

In our system two types of skew frequently occur:

- **Skewed Key Frequencies**
- **Skewed Tuple Sizes**

Idea: Use more *partitions* than the original MapReduce

Problem: How to assign *partitions* to the *reduce* tasks in order to minimize the reduce phase execution time?

Exploit two approaches:

- **Simple Partitions’ Assignment**
- **Count Min Sketch Assignment**
Simple Partitions’ Assignment

1. Calculate partitions sizes (P_i)
2. Sort partition sizes
3. Estimate the execution times ($r \cdot t_i$) of assigning each partition to the available reduce tasks
4. Pick the reduce task (R_i) that requires the minimum execution time

Map Tasks

Reduce Tasks

Master

Dynamic Partitioning Algorithm

Estimated via k-NN smoothing
Count-Min Sketch Assignment

1. Calculate partitions’ sizes \((P_i) \) for each hash function \((h_i) \)
2. For each hash function apply Simple Partitions Assignment algorithm
3. Pick the hash function \((h_i) \) that minimizes the reduce phase execution time

Dynamic Partitioning Algorithm

- For each \(h_i \)
- \(h_1: P_1 \) + \(h_2: P_1 \) → \(h_1: P_1 \) + \(h_2: P_1 \)

Map Tasks

- \(h_1: P_1 \) + \(h_2: P_1 \)

Reduce Tasks

- \(h_1: P_1 : R_1 \) + \(h_2: P_1 : R_2 \)

Master

- Choose \(h_i \) with minimum time
- \(h_1: P_1 : R_1 \)

Inform map tasks

- \(h_1: P_1 : R_1 \)
Implementation

• We implemented and evaluated DynamicShare on Planetlab. Fourteen nodes were used with 82 processing cores. One dedicated node was the Master and the others used as Workers.

• Two MapReduce jobs were issued:
 – A Twitter friendship request query on 2GB of available tweets. 59 map and 23 reduce tasks were used.
 – A Youtube friends counting application for a 39MB Youtube social graph. Again 59 map and 23 reduce tasks were used.

• Compared our scheduling proposal with:
 – Earliest Deadline First (EDF)
 – FIFO
 – FAIR

• Our partitioning algorithms were compared to:
 – Load Balance [Gufler@CLOSER2011]
 – Hadoop
 – Skewtune [Kwon@SIGMOD2012]
Experiments

- **k-NN Smoothing Performance**
 - Initially when not enough data are available, the estimated value is larger than the actual
 - Better prediction when more past runs are used

- **LOF Execution time**
 - LOF depends on the number of tasks used by a job
 - Even for great number of tasks the algorithm is capable of detecting outliers in respectable amount of time

- **Deadline misses comparison**
 - LLF maintains the percentage of deadline misses at the lowest possible level
 - Takes into account the current system conditions for the assignment
Experiments

- Comparing LB with DP in regards to achieved balance
 - LB has better results because it considers a fair distribution of the partitions to the available reduce tasks
 - DP does not consider balance in the assignment

- Comparing DP with LB in regards to achieved execution time
 - Balance is not the correct approach for heterogeneous environments
 - DP’s opportunistic assignment exploits high performance nodes by assigning extra partitions
Experiments

- Comparing DP with Skewtune and Hadoop partitioning
 - Hadoop leads to the execution of large partitions to slow nodes
 - Skewtune repartitioning cost is prohibitive for short jobs
 - DP does an appropriate one time assignment
 - Similar results were observed in Youtube job

- Comparing DP with and without sketches
 - DP with sketches achieves better results than DP without sketches, because more partitions assignments are possible
 - However the overhead of the algorithm is not negligible. When sketches are applied DP requires approximately 200 ms while without sketches only 80 ms
Conclusions and Future Work

• We proposed a new framework for handling MapReduce jobs with real-time constraints in highly heterogeneous environments using:
 – *non-parametric* regression for estimating tasks’ execution times
 – *Least Laxity First* scheduling of jobs’ tasks in the available slots
 – *Local Outlier Factor* for detecting overloaded nodes
 – Dynamic Partitioning algorithms for handling skewed data

• Evaluated our proposal in Planetlab, and the results point out that our system achieves its goals

• Future work:
 – Dynamically decide the number of partitions and examine the trade-off between the reduce phase execution time and the two partitioning algorithms
Thank you

Questions??