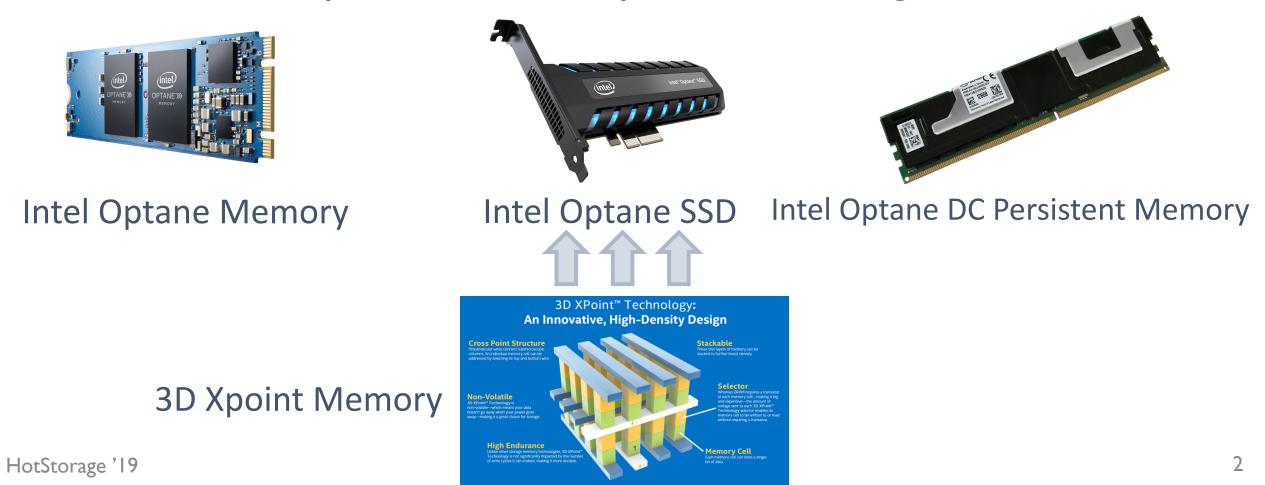
Towards an Unwritten Contract of Intel Optane SSD

Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau

Outline

Background & Motivation

An Unwritten Contract of Intel Optane SSD


Implications from the Contract

Discussion

HotStorage '19

Background

New Non-volatile Memory technologies provide unprecedented performance for persistent storage

Background: Intel Optane SSD

The most cost-effective and widely available option

Intel Optane SSD

redis

Motivation

Intel Optane SSD

How to use it effectively?

How to use a device effectively?

The Written Contract

The Unwritten Contract

Register	7	6	5	4	3	2	1	0	
Features(7:0)		Sector Count 7:0							
Features(15:8)		Sector Count 15:8							
Count(7:0)		TAG Reserved				d			
Count(15:8)	PRIO	PRIO(1:0) Reserved							
LBA(7:0)		LBA 7:0							
LBA(31:24)		LBA 31:24							
LBA(15:8)		LBA 15:8							
LBA(39:32)		LBA 39:32							
LBA(23:16		LBA 23:16							
LBA(47:40)		LBA 47:40							
ICC		ICC(7:0)							
Device	FUA	1	Res	0		Res	erved		
Command		60h							

Figure 205 – READ FPDMA QUEUED command definition

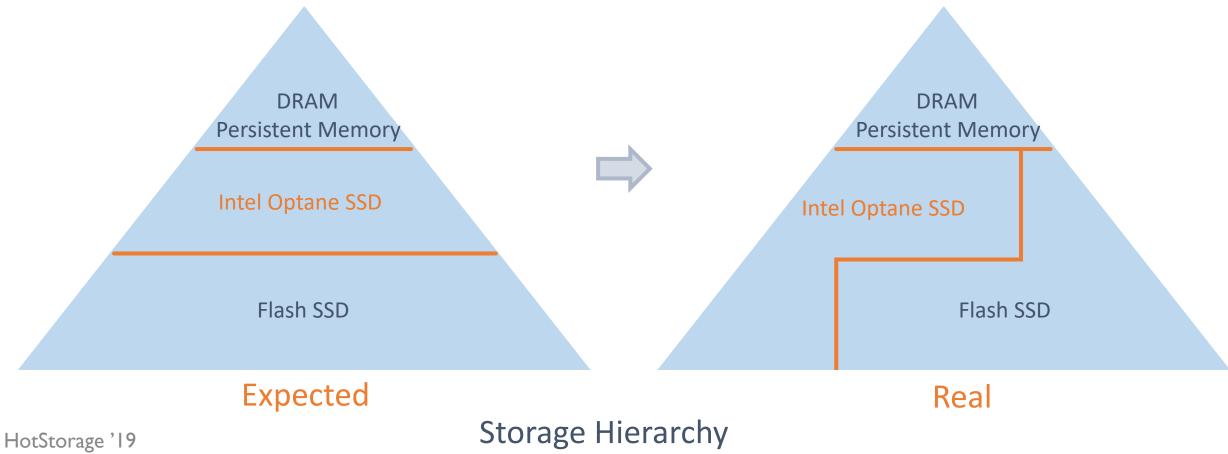
		Dute 1	D: 4: 0	Dute 4		Dute 0				
		Byte 3 31 30 29 28 27 26 25 24	Byte 2	Byte 1	9876	Byte 0				
	0		d Identifier	P	FUSE	Opcode				
		Namespace Identifier								
		Matadata Daintar an Matadata CCL Commont Daintar								
		Metadata Pointer or Metadata SGL Segment Pointer								
		DDD Exted								
lord		PRP Entry1								
DWord		PPD Extra/								
		PRP Entry2								
		Starting LBA								
		LR FUA PRINFO		Number of Logical Blocks						
						DSM				
		Expected Initial Logical Block Reference Tag								
		Expected Logical E	Block Application Tag	Expected Log	ical Block Appli	cation Tag Mask				

 HDD: (Steven et al.)
"Sequential accesses are the best, much better than non-sequential."

- ✓ SSD : (Jun et al.)
 - Large Request Scale
 - Locality
 - Grouping by Death Time

- ...

Intel Optane SSD


An Unwritten Contract of Intel Optane SSD

An Unwritten Contract of Intel Optane SSD

Immediate performance: (6)

- → Access with Low Request Scale Rule
- → Random Access is OK Rule
- → Avoid Crowded Accesses Rule
- → Control Overall Load Rule
- → Avoid Tiny Accesses Rule
- → Issue 4KB Aligned Requests Rule
- Sustainable performance: (1)
 - → Forget Garbage Collection Rule

An Unwritten Contract of Intel Optane SSD Rule I:Access with Low Request Scale Rule 4: Control Overall Load

Motivation:

- → 3D XPoint Memory > NAND Flash (up to x1000 lower latency[2])
- Does Optane SSD always perform better than Flash SSD?

What is the rule?

"To obtain low latency, Optane SSD users should issue small requests and maintain a small number of outstanding IOs"

9

Optane SSD vs. Samsung 970 Pro:

- \rightarrow What we do:
 - Random read-only / write-only workloads
 - Each workload has two variables: Request Size and Queue Depth

Read

Optane SSD vs. Samsung 970 Pro:

Intel Optane SSD

HotStorage '19

Flash SSD

Real

What we observe: optane better Similar Write Results (in paper) -0.2 -0.3 1.7 1.0 -0.1 -0.2 -0.3 - 56 Optane SSD > / = / < Flash SSD - 28 1.7 1.8 0.6 -0.3 -0.3 -0.3 -0.4 $L_{higher} - L_{lower}$ 2.2 2.3 -0.3 -0.4 0.9 0.1 64 -0.3 Size (KB) L_{lower} T > 0 when Optane has smaller latency 1 3 3 7 -3.2 3.6 1.4 -0.2 0.4 -0.1 -0.2 Request 9 8 16 - -T < 0 when Flash has smaller latency 3.9 4.3 2.4 1.1 0.4 0.2 0.3 5.2 4.9 4.7 2.0 0.7 0.2 0.0 DRAM 4.3 6.2 5.7 1.9 0.7 Persistent Memory 5.9 0.2 4

Avg Latency of random workloads, Optane vs. Flash

6.7

2

7.4

1

6.9

4

4.5

8

Queue Depth

1.9

16

0.7

32

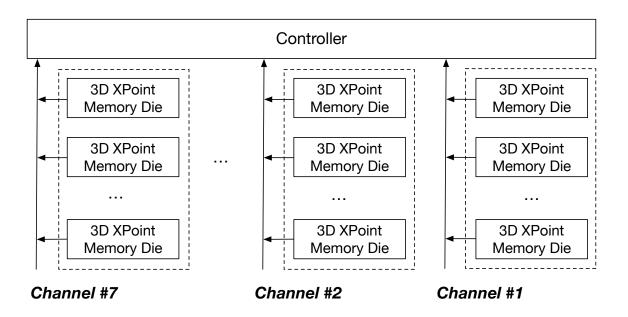
0.2

64

- 5.0

- 2.5

- 0.0


- -2.5

-5.0

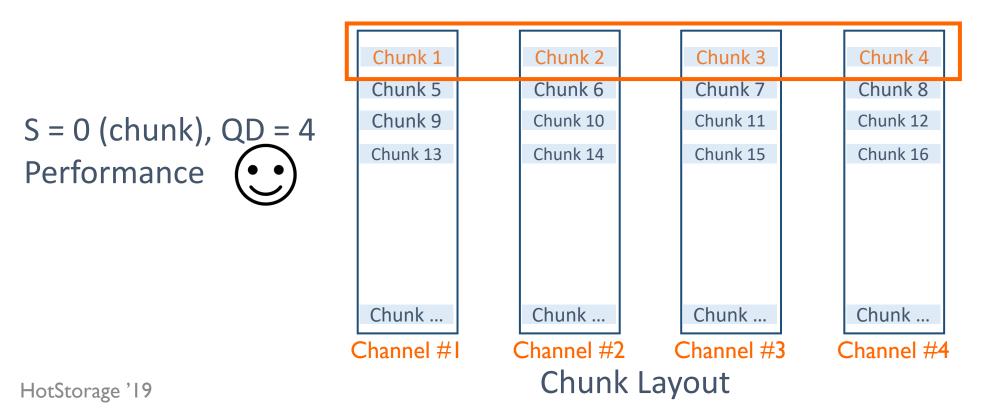
flash better

Uncover the internals of the Optane SSD

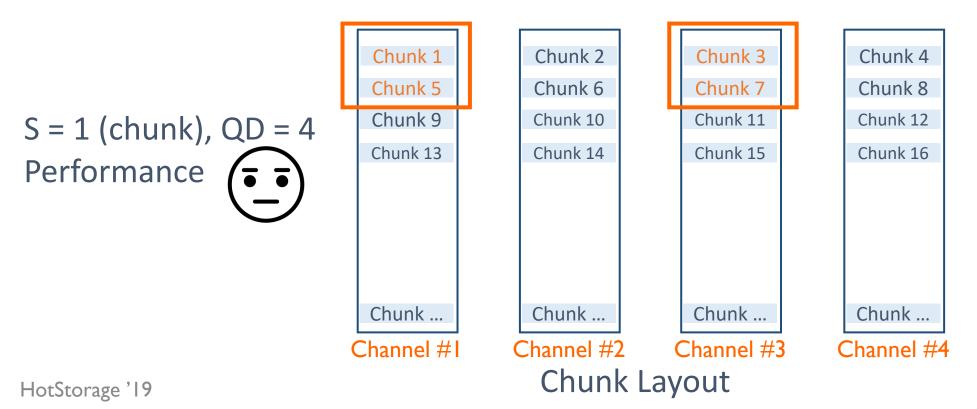
- → Internal parallelism
 - dictates its behavior when serving workloads with high request scale
 - Optane SSD: RAID-like organization of memory dies
 - The interleaving degree (#channels)

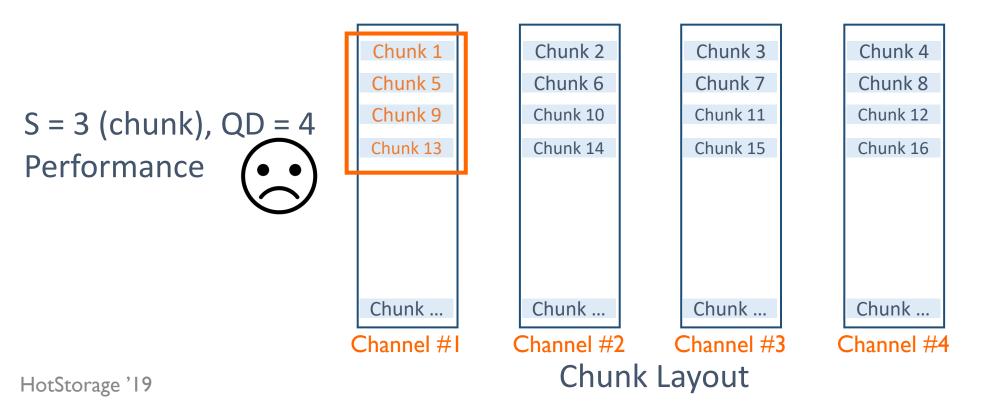


RAID-like Architecture in Optane SSD

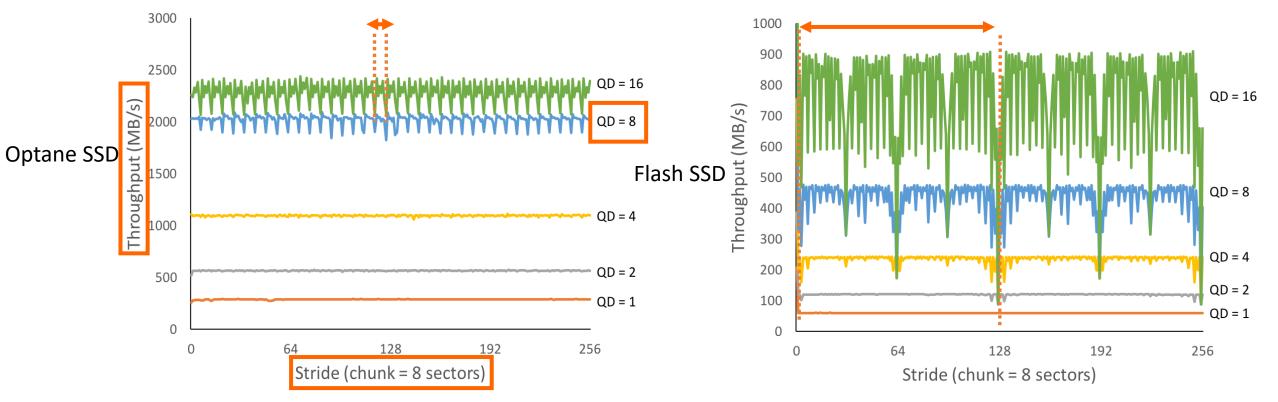

Detecting Interleaving Degree of Optane SSD:

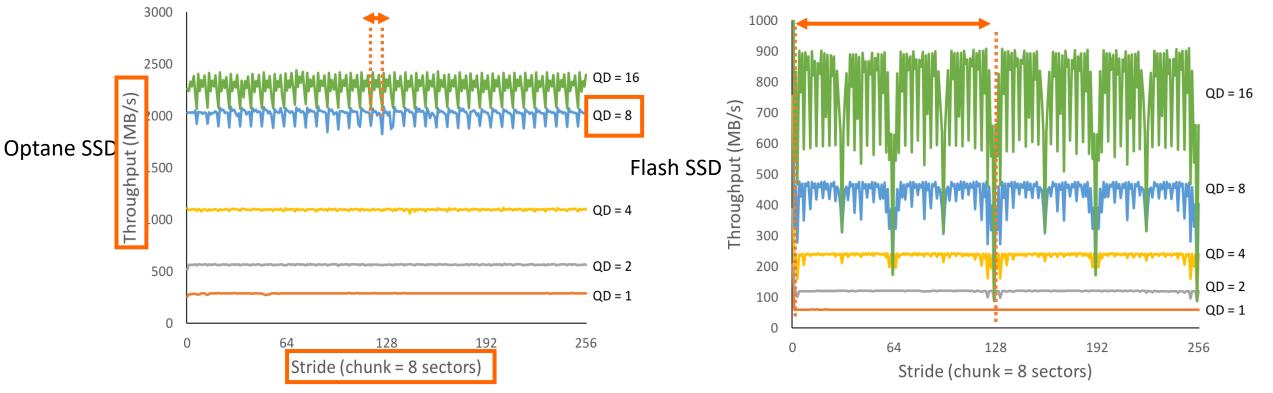
- → What we do: (Feng et al.(HPCA II), Timothy et al.(ASPLOS 04))
 - Precondition: sequential writes => evenly distribute
 - 4KB (chunk) read stream with stride S (S = distance between consecutive chunks)


Different S => Different throughput


- → What we do:
 - Precondition: sequential writes
 - 4KB (chunk) read stream with stride S (S = distance between consecutive chunks)

- → What we do:
 - Precondition: sequential writes
 - 4KB (chunk) read stream with stride S (S = distance between consecutive chunks)


- → What we do:
 - Precondition: sequential writes
 - 4KB (chunk) read stream with stride S (S = distance between consecutive chunks)


Detecting Interleaving Degree of Optane SSD:

- → What we observe:
 - → Intuition:

Distance between the lowest dips in each line => the interleaving degree

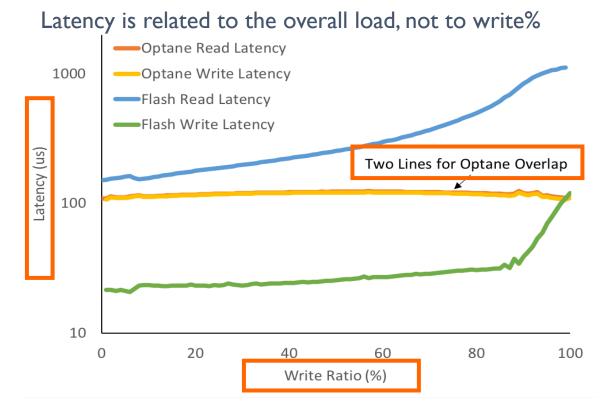
- → What we observe:
 - Internal parallelism: Optane SSD (7) << Flash SSD (128)
 - Explains Optane SSD's worse behavior serving workloads with high request scale

Motivation:

Optane SSD facing mixed (read and write) workloads?

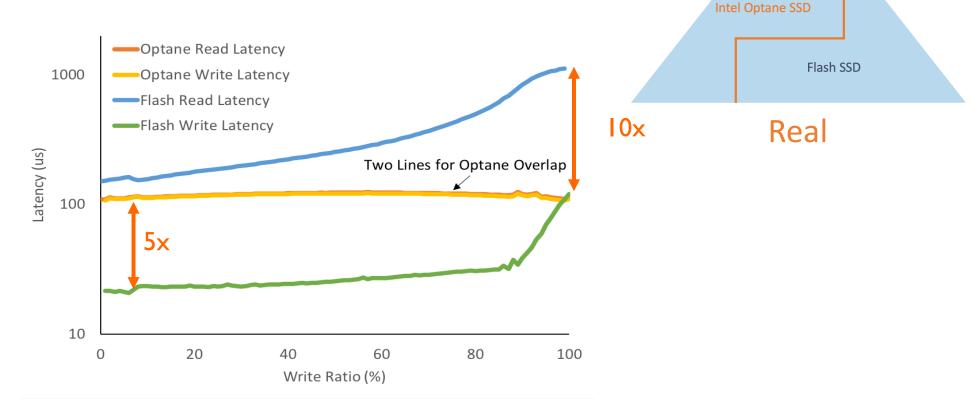
What is the rule?

- → Distinctive from Flash SSD!
- "To achieve optimal latency from Optane SSD, the client must control the overall load of both reads and writes."


Experiments: Optane SSD serving mixed workloads

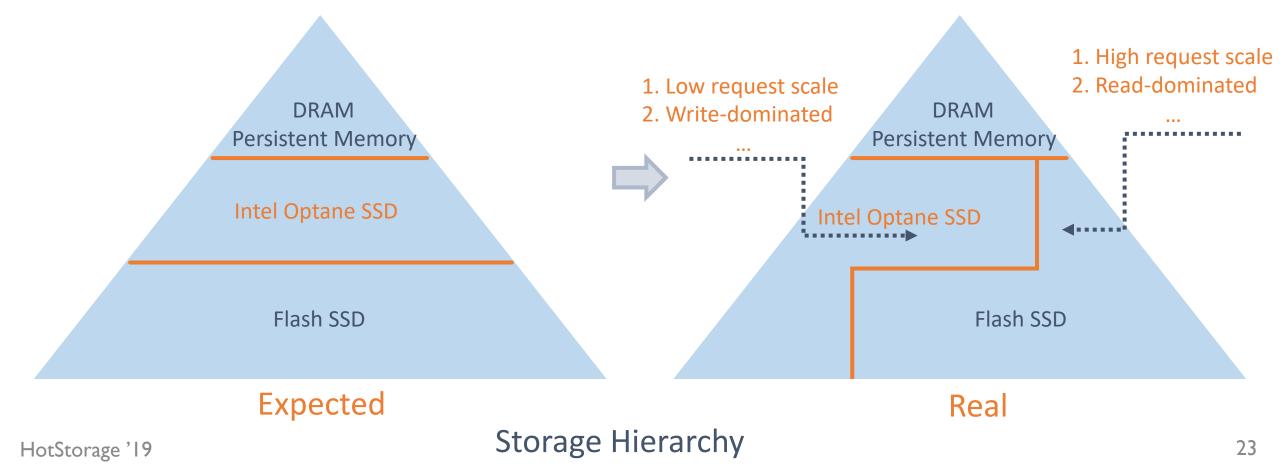
- \rightarrow What we do?
 - Random 4KB requests (reads + writes, QD=64), varying write%

Experiments: Optane SSD serving mixed workloads


- → What we observe?
 - Optane SSD (throughput yield similar results)

Reads = Writes;

Experiments: Optane SSD serving mixed workloads


- → What we observe?
 - Optane SSD vs. Flash SSD: distinctive behavior

DRAM

Persistent Memory

An Unwritten Contract of Intel Optane SSD Rule I:Access with Low Request Scale Rule 4: Control Overall Load

Other Rules...

Rule 2: Random Access is OK

Motivation:

→ Optane SSD: Random vs. Sequential?

What is the rule?

"Optane SSD is a random access block device, where clients can observe the same performance for random and sequential workloads"

Rule 3, Rule 5, Rule 6

Motivation:

Byte-addressability of 3D XPoint Memory
=> Efficient tiny accesses to Optane SSD?

What is the rule?

- → Rule 3: Avoid Crowded Accesses (4.6x)
 - Clients of Optane SSD should never issue parallel accesses to a single chunk (4KB)
- → Rule 5: Avoid Tiny Accesses (5x)
 - → To exploit bandwidth of the SSD, the client must not issue requests less than 4KB.
- → Rule 6: Issue 4KB Aligned Requests (1.2x)
 - To achieve the best latency, requests issued to Optane SSD should always align to eight sectors.

Rule 7: Forget Garbage Collection

Motivation:

- → Optane SSD maintains MAX throughput for sustained writes
- → Insights of this?

Optane: LBA-based mapping vs. Flash : written-order based

What is the rule?

→ There is no need to worry about garbage collection in Optane SSD.

An Unwritten Contract of Intel Optane SSD

Immediate performance: (6)

- → Access with Low Request Scale Rule
- → Random Access is OK Rule
- → Avoid Crowded Accesses Rule
- → Control Overall Load Rule
- → Avoid Tiny Accesses Rule
- → Issue 4KB Aligned Requests Rule
- Sustainable performance: (1)
 - → Forget Garbage Collection Rule

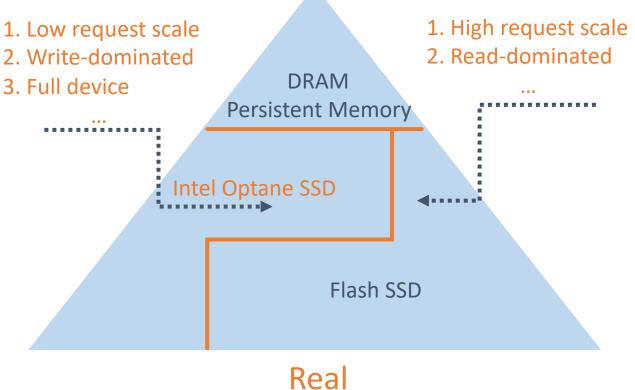
(Feedback)

More interesting questions to answer?

Implications from the Contract

Users design systems for Optane SSD

- → Random Access is Okay.
 - Restructuring of external data structures
 - Much effort: random -> sequential accesses ; Less necessary
 - E.g. Single Machine Graph Processing Systems (Nima Elyasi et al. FAST'19)
 - Applications which behave poorly on Flash thus become potential consumers
- → No Crowded Accesses, No Tiny Access, and Alignment rule
 - Pitfalls that fine-grained external data structure must be aware


Implications from the Contract

Users who combine Flash and Optane in a hybrid setting

- → Access with Low Request Scale Rule
- → Control Overall Load Rule
- → Forget Garbage Collection Rule

Classic concept of hierarchy need to be reconsidered

→ How to split accesses?

Conclusion

We analyze a NVM-based block device: the Intel Optane SSD We formalize the rules that Optane SSD users should follow Implications from this Contract

Interesting thing we can do with the contract?

Acknowledgement

Microsoft GRAY SYSTEMS LAB

Thanks!

Questions?