
Filesystem Aging: 
It’s More Usage than Fullness

Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Bender, William
Jannen, Rob Johnson, Donald Porter, and Martin Farach-Colton

What is filesystem aging?

Aging is fragmentation over time

What is filesystem aging?

Aging is fragmentation over time

What is filesystem aging?

Aging is fragmentation over time

Performance

Fi
le

 S
ys

te
m

 S
pe

ed

Time

Is aging a problem?

Is aging a problem?

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

Is aging a problem?

http://howtogeek.com

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it

is not necessary to worry about
fragmentation in a Linux system.”

Is aging a problem?

http://howtogeek.com

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it

is not necessary to worry about
fragmentation in a Linux system.”

Is aging a problem?

Aging is not a
problem

(unless your
disk is full)

http://howtogeek.com

Chris Hoffman at howtogeek.com says:

“Linux’s ext2, ext3, and ext4 file systems… [are] designed to avoid
fragmentation in normal use.”

“If you do have problems with fragmentation on
Linux, you probably need a larger hard disk.”

“Modern Linux filesystems keep
fragmentation at a minimum…Therefore it

is not necessary to worry about
fragmentation in a Linux system.”

Is aging a problem?

Aging is not a
problem

(unless your
disk is full)

http://howtogeek.com

Recent work:
Aging is a problem!

Recent work on aging

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

“Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems”
Kadekodi et. al. ATC 2018

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

“Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems”
Kadekodi et. al. ATC 2018

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Real world file systems show a lot of aging,
as well as free space fragmentation.

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

“Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems”
Kadekodi et. al. ATC 2018

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Real world file systems show a lot of aging,
as well as free space fragmentation.

Claim:
Only happens when

the disk is full

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

“Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems”
Kadekodi et. al. ATC 2018

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Real world file systems show a lot of aging,
as well as free space fragmentation.

Aging is a
problem

Disk fullness
????

Claim:
Only happens when

the disk is full

Recent work on aging

“File Systems Fated for Senescence? Nonsense, says Science!”
Conway et. al. FAST 2017

“Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems”
Kadekodi et. al. ATC 2018

On modern filesystems, aging is severe and
happens quickly even if your disk is almost empty.

Real world file systems show a lot of aging,
as well as free space fragmentation.

Aging is a
problem

Disk fullness
????

Claim:
Only happens when

the disk is full

Flavors of Aging

Flavors of Aging

3 Flavors of Aging

Read Aging Write Aging Free Space

Fragmentation

Flavors of Aging

3 Flavors of Aging

Read Aging Write Aging Free Space

Fragmentation

Fragmentation of pages
which are read together

Fragmentation of pages
which are written together

Fragmentation of the
available free space

OR

Additional work when writing

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

write it to available blocks

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

write it to available blocks both read and
write aging

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

defragment the free space

Flavors of Aging

Different types of aging interact

Free Space

Fragmentation

Fragmentation of the
available free space

A filesystem:

each square represents a page,

different colors are different files

How do we write this large file?

defragment the free space lots of write aging

How much aging is
caused by disk fullness?

This Work

This work tries to answer: 
How much aging is caused by disk fullness?

This Work

This work tries to answer: 
How much aging is caused by disk fullness?

Hypothesis:

A lot

This Work

This work tries to answer: 
How much aging is caused by disk fullness?

Hypothesis:

A lot

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Git Replay Benchmark

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

Git Replay Benchmark

get coffee

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

get coffee
git pull

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

get coffee
git pull
make

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

get coffee
git pull
make
get coffee

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

get coffee
git pull
make
get coffee
git pull

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

git pull

make

git pull

make

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We need a workload that:
• reflects actual use over many years

• can be generated and replayed quickly

• can operate on a nearly full disk

Let’s model a very simple case: Developers

Git Replay Benchmark

get coffee
git pull
make
get coffee
git pull
add awesome features
get coffee
git pull
fix bugs
. . .

git pull

make

git pull

make

We can simulate a developer by replaying Git histories

Git Replay Benchmark

Use the Linux kernel repo from github.com

Do 100 git pulls

Measure Performance

http://github.com

How to Measure Aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

How to measure
read aging

Measuring Aging

time grep -r random_string /path/to/filesystem

dir

file1 file2 file3 file4

Measure read aging by reading through all the files in directory order

Normalize by
filesystem size

How to measure
read aging

Git Replay Benchmark

Use the Linux kernel repo from github.com

Do 100 git pulls

Measure Performance

http://github.com

Git Replay Benchmark

Use the Linux kernel repo from github.com

Do 100 git pulls

Measure Performance

But what about when the disk fills up?

http://github.com

Git Replay Benchmark
(full disk edition)

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull
git pull

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull
git pull
git pull

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull
git pull
git pull
git pull

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull
git pull
git pull

git pull
git pull

FAIL

Git Replay Benchmark (full disk edition)

But what about when the disk fills up?

Use multiple copies of the repo

Linux1 Linux2

Linux4Linux3

git pull
git pull
git pull

git pull
git pull

FAIL

When the disk fills and a
pull fails, delete one

Full Disk Git Aging on HDD

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

The git replay benchmark
quickly generates a big

drop in performance

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

The git replay benchmark
quickly generates a big

drop in performance

But how much is
from disk fullness?

Need to compare
to non-full disks

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

Linux6Linux5

Linux8Linux7

It’ll still just be full!

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

How to compare to non-full disks

Linux1 Linux2

Linux4Linux3

We can’t just use a larger disk
with the git replay benchmark

It’ll still just be full!

We record the operations on
the small disk and replay
them on the larger disk

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

aging from fullness

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

aging from fullness

How can we be sure the
performance drop is aging?

How to isolate aging

Unaged Baseline

Want an “unaged” baseline

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged baseline:
Copy logical state to

empty filesystem

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged baseline:
Copy logical state to

empty filesystem

Do 100 git pulls

Measure (aged) performance

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged baseline:
Copy logical state to

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged baseline:
Copy logical state to

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/

Measure (unaged) performance

Unaged Baseline

Want an “unaged” baseline

“What the file system would do if
the data had always been there”

Unaged baseline:
Copy logical state to

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/

Measure (unaged) performance

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

usage

aging

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

500GiB 7200 RPM

Toshiba HDD

Ubuntu version 18.04 LTS

Linux kernel v 4.15

usage

aging

aging from fullness

Full Disk Git Aging on HDD (XFS and BTRFS)
gr

ep
 ti

m
e

(s
ec

on
ds

 /
G

iB
)

0

200

400

600

800

1000

number of pulls performed
0 2000 4000 6000 8000 10000

XFS full aged
XFS empty aged
XFS unaged

0

200

400

600

800

1000

number of pulls performed
0 2000 4000 6000 8000 10000

BTRFS full aged
BTRFS empty aged
BTRFS unaged

XFS BTRFS

Full Disk Git Aging on SSD

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

5

10

15

20

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on SSD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

250 GiB Samsung

860 EVO SSD

Ubuntu version 14.04 LTS

Linux kernel v 3.11

gr
ep

 ti
m

e
(s

ec
on

ds
 /

G
iB

)

0

5

10

15

20

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on SSD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:

Dell PowerEdge T130

4-core 3.00 GHz Intel®
Xeon(R) E3-1220 v6 CPU

16 GiB RAM

250 GiB Samsung

860 EVO SSD

Ubuntu version 14.04 LTS

Linux kernel v 3.11

0

5

10

15

20

0 2000 4000 6000 8000 10000

ext4 full aged
ext4 empty aged
ext4 unaged

Full Disk Git Aging on SSD (ext4)
ext4

0

5

10

15

20

0 2000 4000 6000 8000 10000

BTRFS full aged
BTRFS empty aged
BTRFS unaged

BTRFS

0

5

10

15

20

0 2000 4000 6000 8000 10000

XFS full aged
XFS empty aged
XFS unaged

XFS

0

5

10

15

20

0 2000 4000 6000 8000 10000

F2FS full aged
F2FS empty aged
F2FS unaged

F2FS

What About Free Space
Fragmentation?

Measuring Aging
How to measure free
space fragmentation

Measuring Aging

e2freefrag on ext4

How to measure free
space fragmentation

Measuring Aging

e2freefrag on ext4

How to measure free
space fragmentation

“histogram over time”

M
iB

 in
 e

xt
en

ts
 o

f g
iv

en
 s

ize
0

2000

4000

6000

8000

10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiB

Measuring Aging

e2freefrag on ext4

How to measure free
space fragmentation

“histogram over time”

M
iB

 in
 e

xt
en

ts
 o

f g
iv

en
 s

ize
0

2000

4000

6000

8000

10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiB

time

Measuring Aging

e2freefrag on ext4

How to measure free
space fragmentation

“histogram over time”

M
iB

 in
 e

xt
en

ts
 o

f g
iv

en
 s

ize
0

2000

4000

6000

8000

10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiB

time

Git Replay Benchmark:
Free Space Fragmentation

Full Disk Git Aging Free Space Fragmentation on ext4
M

iB
 in

 e
xt

en
ts

 o
f g

iv
en

 s
ize

0

1000

2000

3000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiBFull

Full Disk Git Aging Free Space Fragmentation on ext4
M

iB
 in

 e
xt

en
ts

 o
f g

iv
en

 s
ize

0

1000

2000

3000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiB

64MiB-128MiB

Empty

Full Disk Git Aging Free Space Fragmentation on ext4
M

iB
 in

 e
xt

en
ts

 o
f g

iv
en

 s
ize

0

1000

2000

3000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

4KiB-8KiB
8KiB-16KiB
16KiB-32KiB
32KiB-64KiB
64KiB-128KiB
128KiB-256KiB
256KiB-512KiB
512KiB-1MiB
1MiB-2MiB
2MiB-4MiB
4MiB-8MiB
8MiB-16MB
16MiB-32MiB
32MiB-64MiB
64MiB-128MiB
128MiB-256MiB
256MiB-512MiB
512MiB-1GiB
1GiB-2GiB

64MiB-128MiB

Unaged

What we learned

What we learned

Aging due to use >> aging due to fullness

Git benchmark:

What we learned

Aging due to use >= aging due to fullness

Worst case benchmark (see paper):

Aging due to use >> aging due to fullness

Git benchmark:

What we learned

Aging due to use >= aging due to fullness

Worst case benchmark (see paper):

Aging due to use >> aging due to fullness

Git benchmark:

Suggests that for most workloads,

use aging is the first-order effect

What we learned

Aging due to use >= aging due to fullness

Worst case benchmark (see paper):

Aging due to use >> aging due to fullness

Git benchmark:

Suggests that for most workloads,

use aging is the first-order effect

Disk Fullness

What we learned

Aging due to use >= aging due to fullness

Worst case benchmark (see paper):

Free-space fragmentation

Aging due to use >> aging due to fullness

Git benchmark:

Suggests that for most workloads,

use aging is the first-order effect

Disk Fullness ⇒

What we learned

Aging due to use >= aging due to fullness

Worst case benchmark (see paper):

Free-space fragmentation

Aging due to use >> aging due to fullness

Git benchmark:

Suggests that for most workloads,

use aging is the first-order effect

Disk Fullness File System Aging⇒ ⇒?

