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pull fails, delete one
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How to isolate aging



Unaged Baseline

Want an “unaged” baseline



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”

Unaged baseline: 
Copy logical state to 

empty filesystem



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”

Unaged baseline: 
Copy logical state to 

empty filesystem

Do 100 git pulls

Measure (aged) performance



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”

Unaged baseline: 
Copy logical state to 

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”

Unaged baseline: 
Copy logical state to 

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/

Measure (unaged) performance



Unaged Baseline

Want an “unaged” baseline

“What the file system would do if 
the data had always been there”

Unaged baseline: 
Copy logical state to 

empty filesystem

Do 100 git pulls

Measure (aged) performance

cp -a /mnt/aged/* /mnt/unaged/

Measure (unaged) performance



gr
ep

 ti
m

e 
(s

ec
on

ds
 / 

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:


Dell PowerEdge T130


4-core 3.00 GHz Intel® 
Xeon(R) E3-1220 v6 CPU


16 GiB RAM


500GiB 7200 RPM

Toshiba HDD


Ubuntu version 18.04 LTS

Linux kernel v 4.15




gr
ep

 ti
m

e 
(s

ec
on

ds
 / 

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:


Dell PowerEdge T130


4-core 3.00 GHz Intel® 
Xeon(R) E3-1220 v6 CPU


16 GiB RAM


500GiB 7200 RPM

Toshiba HDD


Ubuntu version 18.04 LTS

Linux kernel v 4.15


usage

aging



gr
ep

 ti
m

e 
(s

ec
on

ds
 / 

G
iB

)

0

200

400

600

800

1000

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on HDD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:


Dell PowerEdge T130


4-core 3.00 GHz Intel® 
Xeon(R) E3-1220 v6 CPU


16 GiB RAM


500GiB 7200 RPM

Toshiba HDD


Ubuntu version 18.04 LTS

Linux kernel v 4.15


usage

aging

aging from fullness



Full Disk Git Aging on HDD (XFS and BTRFS)
gr

ep
 ti

m
e 

(s
ec

on
ds

 / 
G

iB
)

0

200

400

600

800

1000

number of pulls performed
0 2000 4000 6000 8000 10000

XFS full aged
XFS empty aged
XFS unaged

0

200

400

600

800

1000

number of pulls performed
0 2000 4000 6000 8000 10000

BTRFS full aged
BTRFS empty aged
BTRFS unaged

XFS BTRFS



Full Disk Git Aging on SSD



gr
ep

 ti
m

e 
(s

ec
on

ds
 / 

G
iB

)

0

5

10

15

20

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on SSD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:


Dell PowerEdge T130


4-core 3.00 GHz Intel® 
Xeon(R) E3-1220 v6 CPU


16 GiB RAM


250 GiB Samsung

860 EVO SSD 


Ubuntu version 14.04 LTS

Linux kernel v 3.11




gr
ep

 ti
m

e 
(s

ec
on

ds
 / 

G
iB

)

0

5

10

15

20

number of pulls performed
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ext4 full aged ext4 empty aged ext4 unaged

Full Disk Git Aging on SSD (ext4)

Full:

Empty:

Unaged:

5GiB partition

50GiB partition

50GiB partition

System Details:


Dell PowerEdge T130


4-core 3.00 GHz Intel® 
Xeon(R) E3-1220 v6 CPU


16 GiB RAM


250 GiB Samsung

860 EVO SSD 


Ubuntu version 14.04 LTS

Linux kernel v 3.11




0

5

10

15

20

0 2000 4000 6000 8000 10000

ext4 full aged
ext4 empty aged
ext4 unaged

Full Disk Git Aging on SSD (ext4)
ext4

0

5

10

15

20

0 2000 4000 6000 8000 10000

BTRFS full aged
BTRFS empty aged
BTRFS unaged

BTRFS

0

5

10

15

20

0 2000 4000 6000 8000 10000

XFS full aged
XFS empty aged
XFS unaged

XFS

0

5

10

15

20

0 2000 4000 6000 8000 10000

F2FS full aged
F2FS empty aged
F2FS unaged

F2FS
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Git Replay Benchmark: 
Free Space Fragmentation
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