
Customizing Progressive JPEG
for Efficient Image Storage

Eddie Yan 
Kaiyuan Zhang

Xi Wang
Karin Strauss

Luis Ceze

HotStorage ‘17
July 11, 2017

2

2

2

2

2

2

2

2

2

Summary

Today’s image hosts need to store many images, but also at many
different sizes (resolutions), increasing pressure on storage systems  
 
Leverage progressive image storage technology to reduce the effect of
serving multiple resolutions of each image

3

Intro & Related Work

JPEG & Progressive JPEG

Progressive JPEG for Dynamic Resizing

Future Work & Conclusion

Contents

4

Facebook Stores Four Versions of Each
Photo (2010)

Facebook’s photo store: handle many small files efficiently [Beaver OSDI
’10]

 
 

“For each uploaded photo, Facebook generates and stores four images of
different sizes, which translates to over 260 billion images and more than
20 petabytes of data.”

5

Facebook Serves Different Image Sizes
Depending on Context

 
Facebook’s photo cache: resizing on the fly + SSD caching [Huang SOSP
’13]

“Facebook serves photos in many different forms to many different users.
For instance, a desktop user with a big window will see larger photos than
a desktop users with a smaller window who in turn sees larger photos than
a mobile user.”

6

FLICKR: No Capacity Upgrades for a
Year with Resizing

A Year Without A Byte [Flickr 2017 1] & 
Real-time Resizing of Flickr Images Using GPUs [Flickr 2017 2]

7

Goals for Image Storage
image storage for large (social media services) should:

8

Goals for Image Storage
image storage for large (social media services) should:

offer low latency, high throughput
[Beaver OSDI ’10] [Huang SOSP ’13]

8

Goals for Image Storage
image storage for large (social media services) should:

offer low latency, high throughput
[Beaver OSDI ’10] [Huang SOSP ’13]

serve multiple resolutions
[Beaver OSDI ’10] [Flickr ’17 1 & 2 ‘17] [Huang SOSP ’13]

8

Goals for Image Storage
image storage for large (social media services) should:

offer low latency, high throughput
[Beaver OSDI ’10] [Huang SOSP ’13]

serve multiple resolutions
[Beaver OSDI ’10] [Flickr ’17 1 & 2 ‘17] [Huang SOSP ’13]

use minimal storage capacity
[Google ’17] [Horn NSDI ’17] [Mozilla circa ’14]

8

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

9

JPEG: Quantization

1 2

...
3

...

less quantization

9

JPEG: Quantization

1 2

...
3

...

less quantization

more quantization

9

JPEG: Lossless Compression

10

(0, 2)(−3); (1, 2)(−3); (0,
2)(−2); (0, 3)(−6); (0, 2)
(2); (0, 3)(−4); (0, 1)(1);
(0, 2)(−3); (0, 1)(1);
(0, 1)(1); (0, 3)(5); (0, 1)
(1); (0, 2)(2); (0, 1)(−1);
(0, 1)(1); (0, 1)(−1); (0, 2)
(2); (5, 1)(−1);
(0, 1)(−1); (0, 0).

Baseline JPEG: Scanline Order

11

Baseline JPEG: Scanline Order

12

Progressive JPEG

1 2

...
3

...

13

Progressive JPEG

1 2

...
3

...

13

Progressive JPEG

1 2

...
3

...

each scan is a refinement pass

13

Progressive JPEG
represent image data in the frequency domain, roughly in
frequency order

load data in frequency order, grouped by “scans”

header scan 1 scan 2 scan 3 scan 4 scan 5

14

header scan 1

15

PSNR: 27.9 dB

Progressive JPEG Example

Progressive JPEG Example
header scan 1 scan 2

16

PSNR: 29.8 dB

header scan 1 scan 2 scan 3

17

PSNR: 31.9 dB

Progressive JPEG Example

header scan 1 scan 2 scan 3 scan 4

18

PSNR: 37.9 dB

Progressive JPEG Example

header scan 1 scan 2 scan 3 scan 4 scan 5

19

PSNR: inf dB

Progressive JPEG Example

header scan 1 scan 2 scan 3 scan 4 scan 5

20

PSNR: 31.9 dB PSNR: inf dB

Progressive JPEG Example

header scan 1 scan 2 scan 3 scan 4 scan 5

21

Progressive JPEG Example

Targeting Dynamic Resizing

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

read(“image.jpg”, src)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

read(“image.jpg”, src)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

read(“image.jpg”, src)

resize(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

read(“image.jpg”, src)

resize(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

send(“image.jpg”, 500px)

read(“image.jpg”, src)

resize(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

send(“image.jpg”, 500px)

read(“image.jpg”, src)

resize(“image.jpg”, 500px)

22

Targeting Dynamic Resizing

request(“image.jpg”, 500px)

send(“image.jpg”, 500px)

read(“image.jpg”, src)

resize(“image.jpg”, 500px) you can
cache this

22

Three Methods for Dynamic
Resizing

read(“image.jpg”, src)

23

Three Methods for Dynamic
Resizing

read(“image.jpg”, src)

read source
JPEG

decode

23

Three Methods for Dynamic
Resizing

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

23

Three Methods for Dynamic
Resizing

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

23

Three Methods for Dynamic
Resizing

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

23

Our Approach

Store only one size of each image, resize dynamically,
and customize JPEGs to match target sizes

24

Using Custom Progressive JPEG
find

custom
scan

configuration

read
necessary

scans

resize
and

encode
(transcode)

resolution
to read

offset mapping

predefined
resolutions

(c) read

(a) write

(b) saved data

25

Using Custom Progressive JPEG
find

custom
scan

configuration

read
necessary

scans

resize
and

encode
(transcode)

resolution
to read

offset mapping

predefined
resolutions

(c) read

(a) write

(b) saved data

25

Using Custom Progressive JPEG
find

custom
scan

configuration

read
necessary

scans

resize
and

encode
(transcode)

resolution
to read

offset mapping

predefined
resolutions

(c) read

(a) write

(b) saved data

25

Customizing Progressive JPEG

1 2

...
3

...

26

Customizing Progressive JPEG

1 2

...
3

...
.

.

26

Tune Coefficients Included in Each Scan
to Match Quality Targets Directly

1 2

...
3

...

27

Tune Coefficients Included in Each Scan
to Match Quality Targets Directly

1 2

...
3

...
.

.

27

Tune Coefficients Included in Each Scan
to Match Quality Targets Directly

1 2

...
3

...
.

.

10%

27

Tune Coefficients Included in Each Scan
to Match Quality Targets Directly

1 2

...
3

...
.

.

10% 25%

27

Tune Coefficients Included in Each Scan
to Match Quality Targets Directly

1 2

...
3

...
.

.

10% 25% 50%

27

Choosing Coefficients

28

Choosing Coefficients

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Choosing Coefficients
best

28

Evaluation

29

Evaluation

minimize required storage capacity

29

Evaluation

minimize required storage capacity

minimize amount of data read (bandwidth)

29

Evaluation

minimize required storage capacity

minimize amount of data read (bandwidth)

limit decode-time overheads

29

Dynamic Resizing Saves Capacity over
Static Schemes

30

Customizing Progressive Reduces Read
Bandwidth Requirements

31

Where to Decode for Resizing?

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

32

Where to Decode for Resizing?

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

32

Where to Decode for Resizing?

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

Progressive JPEG is more expensive to decode than
baseline JPEG

32

Where to Decode for Resizing?

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

Progressive JPEG is more expensive to decode than
baseline JPEG

32

Where to Decode for Resizing?

read(“image.jpg”, src)

read source
JPEG

decode

read progressive
JPEG partially

decode

read custom
progressive

JPEG partially

decode

Baseline Progressive JPEG Custom Progressive JPEG

Two Choices:
1. decode on client 📱
2. decode on server 🌐

Progressive JPEG is more expensive to decode than
baseline JPEG

32

http://emojipedia.org/mobile-phone/

Where to Decode for Resizing?

33

Where to Decode for Resizing?

33

Client Server

Where to Decode for Resizing?

33

Client Server

Input Truncated PJPEG Truncated PJPEG

Where to Decode for Resizing?

33

Client Server

Input Truncated PJPEG Truncated PJPEG

Output Resized JPEG Resized JPEG

Where to Decode for Resizing?

33

Client Server

Input Truncated PJPEG Truncated PJPEG

Output Resized JPEG Resized JPEG

Baseline Input Resized JPEG Full Size JPEG

Where to Decode for Resizing?

33

Client Server

Input Truncated PJPEG Truncated PJPEG

Output Resized JPEG Resized JPEG

Baseline Input Resized JPEG Full Size JPEG

Change in Input Resized JPEG to
Truncated Progressive

Full Size JPEG to
Truncated Progressive

Decoding on the Server has Lower
Overhead

34

Decoding on the Server has Lower
Overhead

34

35

Minimize required storage capacity

35

Minimize required storage capacity

Minimize amount of data read

35

Minimize required storage capacity

Minimize amount of data read

Limit decode-time overheads

35

Minimize required storage capacity

Minimize amount of data read

Limit decode-time overheads

dynamic resizing
custom PJPEG

+dynamic
resizing

35

Minimize required storage capacity

Minimize amount of data read

Limit decode-time overheads

dynamic resizing
custom PJPEG

+dynamic
resizing

✅ ✅

35

Minimize required storage capacity

Minimize amount of data read

Limit decode-time overheads

dynamic resizing
custom PJPEG

+dynamic
resizing

✅ ✅

❌ ✅

35

Minimize required storage capacity

Minimize amount of data read

Limit decode-time overheads

dynamic resizing
custom PJPEG

+dynamic
resizing

✅ ✅

❌ ✅

≈ ≈

35

Future Work

we need accurate, perceptual, image quality metrics

we should make this faster

36

Conclusion

37

Conclusion

modern image storage services store a lot of images, at many resolutions

37

Conclusion

modern image storage services store a lot of images, at many resolutions

serving multiple resolutions is necessary, but wastes capacity

37

Conclusion

modern image storage services store a lot of images, at many resolutions

serving multiple resolutions is necessary, but wastes capacity

we can do better by only reading the necessary data for each request and
customizing image data layout

37

Thank You

Questions?

38

