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Unified storage systems
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Examples
● OnTap
● Swift
● Ceph
● GPFS
● EMC



Eliminating layers: big challenges, big rewards

Talk Outline

● Motivating unified storage
● Storage interface design space
● Declarative storage interfaces
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Big Question

If unified storage becomes the new normal, 
what new challenges will need to be 
addressed in system design?



Motivation: systems trend towards generality

Specialized real-time and 
embedded systems

Embedded Linux and 
RT_PREEMPT

Specialized unstructured data 
management systems

JSON data type in relational 
database management systems

Specialized storage systems Embedded Ceph and unified 
system
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Technology Trend Example



Examples
● Locking, Logging, 

Concurrency control,
● Metadata 

management
● Remote compute

Motivation: breaking the narrow waist model

User Defined Classes

Developers willing to break 
layers and use non-standard 
APIs 7



Why in practice do people break down layers?
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Code path and API inefficiencies

Duplication of services, 

over-provisioning, cost, ris
ks



Unified storage has its own set of challenges
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Code path and API inefficiencies

Duplication of services, 

over-provisioning, cost, ris
ks

Portability, QoS, Safety

(plus code path inefficiencies)



Exploring design challenges in unified storage
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Code path and API inefficiencies

Duplication of services, 

over-provisioning, cost, ris
ks



Malacology: programmable interface research platform
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Target storage interface 
(Goal)

Internal sys services 
(Building blocks)

Composed, generic 
service glue layer

Malacology: A Programmable Storage System, M. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, EuroSys ‘17
Mantle: A Programmable Metadata Load Balancer for the Ceph File System, M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt, et. al, SC ‘15
CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei,  et. al,  NSDI ‘12



Keeping pace with evolving storage systems
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Hard-wired prototype 
implementations

How to take advantage of... 
● Software upgrades
● New hardware
● Additional services
● Performance features



Example: building the CORFU shared-log interface
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0 1 2 3 4 5 6 7 8 9 ...
● CORFU1 is a dist. shared-log
● High-performance design

○ Append and random reads
○ I/O parallelism (striping)
○ Soft-state network counter

● Challenges
○ Find a good mapping
○ Performance optimizations
○ Minimal maintenance

CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei,  et. al,  NSDI ‘12

??



Example: building CORFU distributed shared-log
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0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● Implementation options
○ Partitioning



Example: building CORFU distributed shared-log
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0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● Implementation options
○ Partitioning
○ Metadata



Example: building CORFU distributed shared-log
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0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces



Example: building CORFU distributed shared-log
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0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces

● Constructed 4 versions
○ 2 partitioning * 2 I/O interfaces
○ Partitioning (1-1, striping)
○ I/O interface (bytestream, K/V)

2x

2x



Example: building CORFU distributed shared-log
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0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces

● Constructed 4 versions
○ 2 partitioning * 2 I/O interfaces
○ Partitioning (1-1, striping)
○ I/O interface (bytestream, K/V)

● Hard-wired implementations
○ Few 1000’s LOC
○ Manually optimize and switch 

between approaches

2x

2x



Example: shared-log performance toss-up in 2014
● Four implementations
● Ceph version circa 2014
● Graph takeaways

○ Clear performance losers

○ Similar top performers

● Our claim… 
○ Select simpler implementation
○ Added complexity for no benefit

● What is complexity?
○ Lines of code
○ Conceptual
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Performance Comparison of 4 Designs
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Example: clear design choice in 2016
● Same implementations
● Same hardware / benchmark
● Newer version of Ceph
● Clear performance winner 

in 2016

Takeaway:

● A reasonable choice in 
2014 would be a poor 
choice in 2016 after a 
simple upgrade
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Problem: navigation of large design space

interfaces / 
data models

heterogeneous 
hardware / 
memories features & 

tunables 
(>1000 in 
Ceph)

time / versions

you are 
here
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DeclStore: express storage interfaces declaratively
● Freedom from storage system and domain expertise
● Abstractions over storage services and interfaces
● The point is… we need a high-level language

○ Many possible mappings
○ Many degrees of freedom

● Generate storage interface implementations
● Exploit relational database optimization research

22



DeclStore: building on a strong foundation
● Based on Bloom programming language
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● High-level declarative language (Alvaro, CIDR `11)
○ Abstract relational data model
○ Programs are queries

● Many degrees of freedom on reordering
○ Subject to optimization

● Evidence this is possible...

○ LogicBlox (Aref, SIGMOD 2015)

○ Dedalus (Alvaro, et. al, Datalog 2010)

○ Declarative Networking (Loo, SIGMOD 2006)



Example: a declarative specification for CORFU
● System state modeled as 

a set of relations
○ Persistent state
○ Input/Output

# persistent relations
table :epoch, [:epoch]
table :log,   [:pos] => [:state, :data]

# interfaces are also like tables
interface input,  :op,   [:type, :pos, :epoch] => [:data]
interface output, :ret,  [:type, :pos, :epoch] => [:retval]

bloom :write do
  temp :valid_write <= write_op.notin(found_op)
  log <+ valid_write { |o| [o.pos, 'valid', o.data] }
  ret <= valid_write { |o| [o.type, o.pos, o.epoch, 'ok'] }
  ret <= write_op.notin(valid_write) { |o|
    [o.type, o.pos, o.epoch, 'read-only']
  }
end
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● Full specification
○ Just another slide’s worth
○ Compare 1K’s LOC C++

● Interfaces are queries over 
a request stream

○ Operate on persistent state
○ Collection operations

Brados: Declarative, Programmable Object Storage, Noah Watkins, Michael Sevilla, Ivo Jimenez, Neha Ojha, Peter Alvaro, Carlos Maltzahn, UCSC-SOE-16-12



What’s the catch?
● This is a storage system, not a database... 
● Generality introduces overhead
● Additional complexity and layers

○ We don’t want layers!

● The cost of online optimization
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Taking advantage of time scales: offline optimization
● We are generating storage service implementations
● Automate integration on new features and hardware
● Planned upgrade points v.s. per-request optimization
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Example: a declarative specification for CORFU
● No hard-wired choice of 

storage interface!
○ Bytestream vs K/V
○ Partitioning strategy

# persistent relations
table :epoch, [:epoch]
table :log,   [:pos] => [:state, :data]

# interfaces are also like tables
interface input,  :op,   [:type, :pos, :epoch] => [:data]
interface output, :ret,  [:type, :pos, :epoch] => [:retval]

bloom :write do
  temp :valid_write <= write_op.notin(found_op)
  log <+ valid_write { |o| [o.pos, 'valid', o.data] }
  ret <= valid_write { |o| [o.type, o.pos, o.epoch, 'ok'] }
  ret <= write_op.notin(valid_write) { |o|
    [o.type, o.pos, o.epoch, 'read-only']
  }
end
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● Convincingly correct!

● Take advantage of existing 
analysis tools and 
techniques!



Example: performance benefit of group commit
● Ceph I/O handling is conservative

○ Queuing, locking, ordering

● Log operations are independent
○ Determined through analysis
○ Amortize across I/O and code path

● Basic Operation Batching
○ Lots of internal code traversal

● Using efficient interfaces
○ Vector or range-based interfaces

● See paper for more details
○ Cost models and outliers
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Conclusion: expanding the set of storage interfaces...

● is becoming increasingly common
○ new systems being built
○ old systems being adapted

● will create an entirely new set of challenges; we showed
○ hard-wired solutions are difficult to maintain
○ even a basic software upgrade can have a big impact

● through declarative specifications can address many concerns
○ lower maintenance costs
○ automate system evolution
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Thank you… Questions?
DeclStore: Layering is for the Faint of Heart
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