DeclStore: Layering is for
the Faint of Heart

Noah Watkins, Michael Sevilla, Ivo Jimenez, Kathryn
Dahlgren, Peter Alvaro, Shel Finkelstein, Carlos Maltzahn

P % o,.
P
3= o
& B
HE@ E5=gH
eV
SRS

e, Y

c R e S S CENTER FOR RESEARCH IN
OPEN SOURCE SOFTWARE

‘ UCSC Systems Research Lab ’

Layers on layers on layers

Application

Middleware

POSIX a#

s o)

‘ UCSC Systems Research Lab ‘

Application-specific storage systems

Special App

Fancy Storage a

‘ UCSC Systems Research Lab ‘

Unified storage systems

Examples

OnTap
Swift
Ceph
GPFS
EMC

Object Logging
Key-value

Sl Special A
File > A

{ Storage Interface

Unified Storage

o o

‘ UCSC Systems Research Lab ‘

Eliminating layers: big challenges, big rewards

Big Question
) Object || P00,
If unified storage becomes the new normal, Block Speﬁial App
what new challenges will need to be S
addressed in system design? . N
] { Storage Interface
Talk Outline

Unified Storage
e Motivating unified storage

e Storage interface design space S S S

e Declarative storage interfaces

Motivation: systems trend towards generality

Technology Trend Example >

Specialized unstructured data
management systems
Specialized real-time and
embedded systems

Count

Motivation: breaking the narrow waist model

: Examples
User Defined Classes P)
e Locking, Log
160r— ——— Concurrenc
Il Domains

[]

140/ mmmm Functions 1 Metadata
manageme

1201 “ 1 e Remote co

100} Q _

80y

T @

401

20}

Developers willing to break

2010 2011 2012 2013 2014 2015 2016

sample Date layers and use non-standard
APls

Why in practice do people break down layers?

Application - PR
-~ ! -~ \
. .1
- Qe® Speci# S)
. 2 e
~~ -~ \\(\eﬁ\\o\e ,L - 0" Se“‘\% a® _-
- a0 o=
- - 20 A -~ = T - \'\06\"\ ‘0(\‘\(\91 -
Qa’\‘“ o - OVP ot O
. \ -
Pl -
- POSIX \ Fancy Storage

s

Object Logging
Key-value

Sl Special A
File > L

{ Storage Interfaces —‘

Unified Storage

o o

SRL

Unified storage has its own set of challenges

Application _ - “ A\ _- “\ Object Kl_eog\?la*ng \
P \ _ - \ Block S = $h \
A\C2 S A . L
o e) =Y iy) e - 59’\6“’ 5 !
T d o\ ¥® Y S -~ Qos‘ﬁ '
P s - - 00 “Q‘G PR ;/ \\\\\j e~
10 ¢ -~ - W o™ - q@® ath
\ 0™ 4o P2
o0 ¥ -~ 0(*@‘ NP (. 009
G _ \ 0\13‘ _ - . &p\U age Interfaces
- el = by - -~
- POSIX \ ~” Fancy Storage \ ~ Unified Storage

‘ UCSC Systems Research Lab ‘

Exploring design challenges in unified storage

Object Logging
Key-value

Sl Special A
File > L

Storage Interfaces

Unified Storage

S

Malacology: programmable interface research platform

Target storage interface
(Goal)

Composed, generic
service glue layer

Internal sys services
(Building blocks)

CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei, et. al, NSDI ‘12

Mantle
(Load Balancer)

Shared Data Service File Load Dura-
Resource /0 Metadata Type Balancing|| bility
I | N W |
. Object Cluster Inode
Monitor
Client Object Server Server Metadata Balancer
Metadata Server

@ ceph

Malacology: A Programmable Storage System, M. Sevilla, N. Watkins, |. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, EuroSys ‘17
Mantle: A Programmable Metadata Load Balancer for the Ceph File System, M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt, et. al, SC ‘15

SRL, -
UCSC Systems Research Lab

Keeping pace with evolving storage systems

: Hard-wired prototype
i implementations

How to take advantage of...

Software upgrades
New hardware
Additional services
Performance features

Mantle
Load Balancer)

Shared Data Service File Load Dura-
Resource I/0 Metadata Type Balancing|| bility
I L\ /

: Object Cluster Inode
libcephfs Classes Maps Stitcts RADOS API
Monitor
Client Object Server Server Metadata Balancer

Metadata Server

SRL -
UCSC Systems Research Lab

Example: building the CORFU shared-log interface

CORFU' is a dist. shared-log

High-performance design

o Append and random reads

o /O parallelism (striping)

o Soft-state network counter
Challenges

o Find a good mapping

o Performance optimizations

o Minimal maintenance

CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei, et. al,

0 (1 |2 |3 [4)/\ 6 [7 |8 |9 <
Shared Data Serv File Load Dura-
Resource /0 Metadat Type Balancing|| bility
I .\ /
: Object Cluster Inode
Monitor
Client Object Server Server Metadata Balancer
Metadata Server
NSDI ‘12 S R L ‘ 13

Example: building CORFU distributed shared-log

e Implementation options
o Partitioning ILog partitioning?: 1-1, striping, etc... |

Shared Data Service File Load Dura-
Resource /0 Metadata Type Balancing|| bility

| v\ 7/

L ¥ . ¥

: Object Cluster Inode
libcephfs Classes Maps Stitcts RADOS API
Monitor
Client Object Server Server Metadata Balancer
Metadata Server

SRL, .
UCSC Systems Research Lab

Example: building CORFU distributed s

Implementation options
Partitioning

(@)

(@)

Metadata

nared-log

O |1 12 |3 |4 |5 |6 (7 |8 |9)
ILog partitioning?: 1-1, striping, etc... |
Shared Data Service File Load Dura-
Resource /0 Metadata Type Balancing|| bility
| Object I_Cl t_ T Xd_ /
: jec uster node
libcephfs Classes 1| Maps | structs | | RADOSAPI
= monfor— ||=
Client Object Server Server Metadata Balancer

Metadata Server

15

Example: building CORFU distributed s

Implementation options
Partitioning

(@)

(@)

@)

Metadata

I/O interfaces

nared-log

O |1 12 |3 |4 |5 |6 (7 |8 |9)
ILog partitioning?: 1-1, striping, etc... |
Shared Data Service File Load Dura-
Resource /0 Metadata Type Balancing|| bility
| Object I_Cl t_ T »d_ /
: jec uster node
libcephfs Classes 1| Maps | structs | | RADOSAPI
= Fonfor— ||=
Client Objec.tl Server Server Metadata Balancer
I' Metadata Server

e ByteStream, K/V
e FS (xfs, btrfs)
e BlueStore
[J

16

Example: building CORFU distributed shared-log

Implementation options

(@)

(@)

@)

Partitioning
Metadata
I/O interfaces

Constructed 4 versions

(@)

(@)

(@)

2 partitioning * 2 I/O interfaces
Partitioning (1-1, striping)
I/O interface (bytestream, K/V)

Shared Data Service Load Dura-
Resource /0 Metadata bility
I Object I—Cl — Xod_ y
: ject Cluster node . ADI
libcephfs Classes | |IIl maps || ||| structs |]| RADOSAPI
= fonfor~ — .
Client Objec.tl Server Server Metadata Balancer
I' Metadata Server

BlueStore
K/V (Rocks, LMDB) |

ByteStream, K/V

2X

UCSC Systems Research Lab ‘

Example: building CORFU distributed shared-log

Implementation options
o Partitioning
o Metadata
o 1/O interfaces
Constructed 4 versions
o 2 partitioning * 2 I/O interfaces
o Partitioning (1-1, striping)
o /O interface (bytestream, K/V)
Hard-wired implementations
o Few 1000’s LOC

o Manually optimize and switch
between approaches

0 1 2 |3 8 |9 \
I Log partitioning?§ 7-1, I
Shared Data Service Load Dura-
Resource /0 Metadata bility
| L _| /
: Object Cluster Inode R ADOS ADI
libcephfs Classes | [II| Maps |1 ||| structs |]| RADOSAPI
= fontor= ||=— [— ——
Client Objec.tl Server Server Metadata Balancer !
I' Metadata Server

ByteStream, K/V

BlueStore
K/V (Rocks, LMDB) |

RL -

UCSC Systems Research Lab

Example: shared-log performance toss-up in 2014

Performance Comparison of 4 Designs

e Four implementations o 25K

e Ceph version circa 2014 @ 20K = :

e Graph takeaways g :
o Clear performance losers § o:5|< ! Cebh 2014 -
© Similar top performers < T = =

e Our claim... Teimes)

o Select simpler implementation

o Added complexity for no benefit
e \What is complexity?

o Lines of code

o Conceptual

RL, -

UCSC Systems Research Lab

Example: clear design choice in 2016

Same implementations
Same hardware / benchmark
Newer version of Ceph

Clear performance winner
in 2016

Takeaway:

A reasonable choice in
2014 would be a poor
choice in 2016 after a
simple upgrade

Appends / Sec

Appends / Sec

2.5K

2.0k |
1.5K |-

1.0K
0.5K

25K
20K
15K
10K

5K

Performance Comparison of 4 Designs

Time (mins)

SRL

UCSC Systems Research Lab y

20

Problem: navigation of large design space

heterogeneous
hardware /
memories

interfaces /
data models

features &
tunables
(>7000 in
Ceph)

you are
here

time / versions
i

SRL, -
UCSC Systems Research Lab

DeclStore: express storage interfaces declaratively

e Freedom from storage system and domain expertise
Abstractions over storage services and interfaces

e The pointis... we need a high-level language
o Many possible mappings
o Many degrees of freedom

e (Generate storage interface implementations
e Exploit relational database optimization research

22

DeclStore: building on a strong foundation

e Based on Bloom programming language

e High-level declarative language (Alvaro, CIDR *11)
o Abstract relational data model
o Programs are queries

e Many degrees of freedom on reordering
o Subject to optimization

e Evidence this is possible...
o LogicBlox (Aref, SIGMOD 2015)
o Dedalus (Alvaro, et. al, Datalog 2010)
o Declarative Networking (Loo, SIGMOD 2006)

bloom

Consi Analvsis in .
R. M:
Design and ion of the Logi System u

nd Collected

aaaaa

MMMMM

Depavus: Datalog in Time and Space

ell Sears’

ey.edu

ystems Research Lab

23

Example: a declarative specification for CORFU

e System state modeled as
a set of relations

o Persistent staV'

o Input/Output

e Interfaces are queries over

a request stream ——

o Operate on persistent state
o Collection operations

e Full specification

o Just another slide’s worth
o Compare 1K's LOC C++

Brados: Declarative, Programmable Object Storage, Noah Watkins, Michael Sevilla, Ivo Jimenez, Neha Ojha, Peter Alvaro, Carlos Maltzahn, UCSC-SOE-16-12

persistent relations

table :epoch, [:epoch]

table :log, [:pos] => [:state, :data]

interfaces are also like tables

interface input, :0p, [:type, :pos, :epoch] => [:data]
interface output, :ret, [:type, :pos, :epoch] => [:retval]

bloom :write do
temp :valid write <= write op.notin(found op)
log <+ valid write { |o| [o.pos, 'wvalid', o.data] }
ret <= valid write { |o| [o.type, o.pos, o.epoch,
ret <= write op.notin(valid write) { |o]
[o.type, ©.pos, o.epoch, 'read-only']
}

end

UCSC Systems Research Lab

SRL. -

What's the catch?

e This is a storage system, not a database...

e Generality introduces overhead

e Additional complexity and layers
o We don’t want layers!

e The cost of online optimization

25

Taking advantage of time scales: offline optimization

e \We are generating storage service implementations
e Automate integration on new features and hardware
e Planned upgrade points v.s. per-request optimization

DeclStore Interface Definition

Y

System
Upgrade
Point

System System
Upgrade Upgrade
Point Point
Y = = = e === >

Timescale
(Month / Year)

Request (< 1ms)

‘ UCSC Systems Research Lab ’

Example: a declarative specification for CORFU

e No hard-wired choice of

storage interface!

o Bytestream vs K/V
o Partitioning strategy

e Take advantage of existing
analysis tools and
techniques!

e Convincingly correct!

persistent relations
table :epoch, [:epoch]
table :log, [:pos] => [:state, :data]

interfaces are also like tables

interface input, :0p, [:type, :pos, :epoch] => [:data]
interface output, :ret, [:type, :pos, :epoch] => [:retval]
bloom :write do

temp :valid write <= write op.notin(found op)

log <+ valid write { |o| [o.pos, 'wvalid', o.data] }

ret <= valid write { |o| [o.type, o.pos, o.epoch, 'ok'] }

ret <= write op.notin(valid write) { |o]
[o.type, ©.pos, o.epoch, 'read-only']
}

end

SRL -
UCSC Systems Research Lab

Example: performance benefit of group commit

e Ceph /O handling is conservative
o Queuing, locking, ordering B Opt-Batch
. . I Basic-Batch

e Log operations are independent 80000

o Determined through analysis
o Amortize across I/0O and code path

e Basic Operation Batching
o Lots of internal code traversal

e Using efficient interfaces
o Vector or range-based interfaces

e See paper for more details .
o Cost models and outliers

60000

40000

Appends per Second

20000

1 5
Batch Size

28

UCSC Systems Research Lab

Conclusion: expanding the set of storage interfaces...

e is becoming increasingly common
o new systems being built
o old systems being adapted

e will create an entirely new set of challenges; we showed
o hard-wired solutions are difficult to maintain
o even a basic software upgrade can have a big impact

e through declarative specifications can address many concerns

o lower maintenance costs
o automate system evolution

SRL

UCSC Systems Research Lab

y 29

Thank you... Questions?

DeclStore: Layering is for the Faint of Heart

Noah Watkins, Michael Sevilla, lvo Jimenez, Kathryn
Dahlgren, Peter Alvaro, Shel Finkelstein, Carlos Maltzahn

TGO
62 S
3= o
{2 A= U. =
RV AEE e o)
N\asia)z);
Vi i} .
W1868 UCSC Systems Research Lab

