
DeclStore: Layering is for
the Faint of Heart

Noah Watkins, Michael Sevilla, Ivo Jimenez, Kathryn
Dahlgren, Peter Alvaro, Shel Finkelstein, Carlos Maltzahn

Layers on layers on layers

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

2

Application-specific storage systems

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

3

Unified storage systems

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

4

Examples
● OnTap
● Swift
● Ceph
● GPFS
● EMC

Eliminating layers: big challenges, big rewards

Talk Outline

● Motivating unified storage
● Storage interface design space
● Declarative storage interfaces

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

5

Big Question

If unified storage becomes the new normal,
what new challenges will need to be
addressed in system design?

Motivation: systems trend towards generality

Specialized real-time and
embedded systems

Embedded Linux and
RT_PREEMPT

Specialized unstructured data
management systems

JSON data type in relational
database management systems

Specialized storage systems Embedded Ceph and unified
system

6

Technology Trend Example

Examples
● Locking, Logging,

Concurrency control,
● Metadata

management
● Remote compute

Motivation: breaking the narrow waist model

User Defined Classes

Developers willing to break
layers and use non-standard
APIs 7

Why in practice do people break down layers?

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

8

Code path and API inefficiencies

Duplication of services,

over-provisioning, cost, ris
ks

Unified storage has its own set of challenges

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

9

Code path and API inefficiencies

Duplication of services,

over-provisioning, cost, ris
ks

Portability, QoS, Safety

(plus code path inefficiencies)

Exploring design challenges in unified storage

Middleware

Application

Special App

Unified Storage

Storage Interfaces

Object
Block
File

Logging
Key-value

Special App

POSIX Fancy Storage

10

Code path and API inefficiencies

Duplication of services,

over-provisioning, cost, ris
ks

Malacology: programmable interface research platform

11

Target storage interface
(Goal)

Internal sys services
(Building blocks)

Composed, generic
service glue layer

Malacology: A Programmable Storage System, M. Sevilla, N. Watkins, I. Jimenez, P. Alvaro, S. Finkelstein, J. LeFevre, C. Maltzahn, EuroSys ‘17
Mantle: A Programmable Metadata Load Balancer for the Ceph File System, M. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. Brandt, et. al, SC ‘15
CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei, et. al, NSDI ‘12

Keeping pace with evolving storage systems

12

Hard-wired prototype
implementations

How to take advantage of...
● Software upgrades
● New hardware
● Additional services
● Performance features

Example: building the CORFU shared-log interface

13

0 1 2 3 4 5 6 7 8 9 ...
● CORFU1 is a dist. shared-log
● High-performance design

○ Append and random reads
○ I/O parallelism (striping)
○ Soft-state network counter

● Challenges
○ Find a good mapping
○ Performance optimizations
○ Minimal maintenance

CORFU: A Shared Log Design for Flash Clusters, Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber, Michael Wei, et. al, NSDI ‘12

??

Example: building CORFU distributed shared-log

14

0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● Implementation options
○ Partitioning

Example: building CORFU distributed shared-log

15

0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● Implementation options
○ Partitioning
○ Metadata

Example: building CORFU distributed shared-log

16

0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces

Example: building CORFU distributed shared-log

17

0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces

● Constructed 4 versions
○ 2 partitioning * 2 I/O interfaces
○ Partitioning (1-1, striping)
○ I/O interface (bytestream, K/V)

2x

2x

Example: building CORFU distributed shared-log

18

0 1 2 3 4 5 6 7 8 9 ...

Log partitioning?: 1-1, striping, etc...

● ByteStream, K/V
● FS (xfs, btrfs)
● BlueStore
● K/V (Rocks, LMDB)

● Implementation options
○ Partitioning
○ Metadata
○ I/O interfaces

● Constructed 4 versions
○ 2 partitioning * 2 I/O interfaces
○ Partitioning (1-1, striping)
○ I/O interface (bytestream, K/V)

● Hard-wired implementations
○ Few 1000’s LOC
○ Manually optimize and switch

between approaches

2x

2x

Example: shared-log performance toss-up in 2014
● Four implementations
● Ceph version circa 2014
● Graph takeaways

○ Clear performance losers

○ Similar top performers

● Our claim…
○ Select simpler implementation
○ Added complexity for no benefit

● What is complexity?
○ Lines of code
○ Conceptual

19

Performance Comparison of 4 Designs

A
pp

en
ds

 /
Se

c

Ceph 2014

Example: clear design choice in 2016
● Same implementations
● Same hardware / benchmark
● Newer version of Ceph
● Clear performance winner

in 2016

Takeaway:

● A reasonable choice in
2014 would be a poor
choice in 2016 after a
simple upgrade

20

Performance Comparison of 4 Designs

A
pp

en
ds

 /
Se

c

Ceph 2014

Ceph 2016A
pp

en
ds

 /
Se

c

Problem: navigation of large design space

interfaces /
data models

heterogeneous
hardware /
memories features &

tunables
(>1000 in
Ceph)

time / versions

you are
here

21

DeclStore: express storage interfaces declaratively
● Freedom from storage system and domain expertise
● Abstractions over storage services and interfaces
● The point is… we need a high-level language

○ Many possible mappings
○ Many degrees of freedom

● Generate storage interface implementations
● Exploit relational database optimization research

22

DeclStore: building on a strong foundation
● Based on Bloom programming language

23

● High-level declarative language (Alvaro, CIDR `11)
○ Abstract relational data model
○ Programs are queries

● Many degrees of freedom on reordering
○ Subject to optimization

● Evidence this is possible...

○ LogicBlox (Aref, SIGMOD 2015)

○ Dedalus (Alvaro, et. al, Datalog 2010)

○ Declarative Networking (Loo, SIGMOD 2006)

Example: a declarative specification for CORFU
● System state modeled as

a set of relations
○ Persistent state
○ Input/Output

persistent relations
table :epoch, [:epoch]
table :log, [:pos] => [:state, :data]

interfaces are also like tables
interface input, :op, [:type, :pos, :epoch] => [:data]
interface output, :ret, [:type, :pos, :epoch] => [:retval]

bloom :write do
 temp :valid_write <= write_op.notin(found_op)
 log <+ valid_write { |o| [o.pos, 'valid', o.data] }
 ret <= valid_write { |o| [o.type, o.pos, o.epoch, 'ok'] }
 ret <= write_op.notin(valid_write) { |o|
 [o.type, o.pos, o.epoch, 'read-only']
 }
end

24

● Full specification
○ Just another slide’s worth
○ Compare 1K’s LOC C++

● Interfaces are queries over
a request stream

○ Operate on persistent state
○ Collection operations

Brados: Declarative, Programmable Object Storage, Noah Watkins, Michael Sevilla, Ivo Jimenez, Neha Ojha, Peter Alvaro, Carlos Maltzahn, UCSC-SOE-16-12

What’s the catch?
● This is a storage system, not a database...
● Generality introduces overhead
● Additional complexity and layers

○ We don’t want layers!

● The cost of online optimization

25

Taking advantage of time scales: offline optimization
● We are generating storage service implementations
● Automate integration on new features and hardware
● Planned upgrade points v.s. per-request optimization

26

System
Upgrade

Point

System
Upgrade

Point

System
Upgrade

Point
Opt.

DeclStore Interface Definition

Opt.

Timescale
(Month / Year) Request (< 1ms)

Example: a declarative specification for CORFU
● No hard-wired choice of

storage interface!
○ Bytestream vs K/V
○ Partitioning strategy

persistent relations
table :epoch, [:epoch]
table :log, [:pos] => [:state, :data]

interfaces are also like tables
interface input, :op, [:type, :pos, :epoch] => [:data]
interface output, :ret, [:type, :pos, :epoch] => [:retval]

bloom :write do
 temp :valid_write <= write_op.notin(found_op)
 log <+ valid_write { |o| [o.pos, 'valid', o.data] }
 ret <= valid_write { |o| [o.type, o.pos, o.epoch, 'ok'] }
 ret <= write_op.notin(valid_write) { |o|
 [o.type, o.pos, o.epoch, 'read-only']
 }
end

27

● Convincingly correct!

● Take advantage of existing
analysis tools and
techniques!

Example: performance benefit of group commit
● Ceph I/O handling is conservative

○ Queuing, locking, ordering

● Log operations are independent
○ Determined through analysis
○ Amortize across I/O and code path

● Basic Operation Batching
○ Lots of internal code traversal

● Using efficient interfaces
○ Vector or range-based interfaces

● See paper for more details
○ Cost models and outliers

28

Conclusion: expanding the set of storage interfaces...

● is becoming increasingly common
○ new systems being built
○ old systems being adapted

● will create an entirely new set of challenges; we showed
○ hard-wired solutions are difficult to maintain
○ even a basic software upgrade can have a big impact

● through declarative specifications can address many concerns
○ lower maintenance costs
○ automate system evolution

29

Thank you… Questions?
DeclStore: Layering is for the Faint of Heart

Noah Watkins, Michael Sevilla, Ivo Jimenez, Kathryn
Dahlgren, Peter Alvaro, Shel Finkelstein, Carlos Maltzahn

