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• Background	and	related	work

• Progressive	data	refactoring		

• Conclusion

2



HPC	systems
•Mission:	illuminate	phenomena	that	are	often	impossible	to	
study	in	a	laboratory	[Oak	Ridge	National	Lab,	2013]
• Climate	impacts	of	energy	use
• Fusion	in	a	reactor	not	yet	built
• Galaxy	formation

•Methodology:	Modeling	and	simulation,	along	with	data	
exploration
• Data	generation	
• Storage
• Analysis		
• Visualization 3



HPC	systems	(cont’d)

• The	big	data	management	challenge [Shalf et.	al.,	2014]

•Worsening	I/O	bottleneck	for	exascale systems
• Exponentially	increasing	multi-scale,	multi-physics	data	
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Data	compression	in	exascale (next-
generation	HPC)	systems
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•Goal:	10x	to	100x	data	reduction	ratio [Ian	Foster	et.	al.,	2017]

• Reduce	data	by	at	least	90%

•Data	features
• Temporal	and	spatial
• High-dimensional
• Floating-point



Data	compressors
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• Lossless	compression
• Deduplication	
• GZIP
• FPC	[Burtscher et.	al.,	2009]

• Lossy compression
• ZFP [Lindstrom	et.	al.,	2014]	
• ISABELA	[Lakshminarasimhan et.al.,	2011]	
• SZ	[Shen	et.	al.,	2016]	



Lossy compression
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Can	floating-point	compressors	achieve	a	
near	100x	compression	ratio?
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Performance	of	compressors
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Can	floating-point	
compressors	achieve	a	near	
100x	compression	ratio?

Yes.	If
Dataset	contains	a	lot	of	
identical	values;

Or,	data	values	highly	skew	
with	moderate	compression	
error	bounds.

No.	For	most	datasets.
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Can	floating-point	
compressors	achieve	a	10x	
compression	ratio?

Yes.	For	a	lot	of	datasets	with	
moderate	compression	error	
bounds.



What	if	the	compression	ratio	is	rushed	to	
100x	by	loosening	error	bounds?	
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Visualization	and	blob	detection	on	compressed	Dpot data.



Limitations	of	data	compression	by	reducing	
floating-point	accuracy	
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•Near	100x	compression	ratio	is	hardly	achievable

• Lost	data	accuracy	cannot	be	restored
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We	propose	Canopus
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• Compressing	HPC	data	in	another	dimension	
(resolution)	

• Enabling	progressive	data	refactoring

• User	transparent	implementation	



Canopus	I/O	configuration



Canopus:	basic	idea
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• Refactor	the	simulation	results	
(via	decimation)	into	a	base	
dataset	along	with	a	series	of	
deltas
• Base	dataset	is	saved	in	fast	
devices,	deltas	in	slow	devices
• Base	dataset	can	be	used	
separately	(at	a	lower	resolution)	
for	analysis
• Selected	subset	of	deltas	to	be	
retrieved	to	restore	data	to	a	
target	accuracy

Simulation

ADIOS Write API 

Canopus
(I/O, refactoring, compression, placement, retrieval, restoration ) 

I/O Transport

MPI MPI_LUSTREPOSIX Dataspaces

Data Analytics

ADIOS Query API 

MPI_AGGREGATE FLEXPATH

Node-local Storage (NVRAM, SSDs) 
Burst Buffer 

ADIOS Kernel 
(buffering, metadata, scheduling, etc.)

Remote Parallel File System
Campaign Storage

Storage Tiers

Canopus	in	HPC	Systems



Canopus	workflow
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HPC Simulations 
(high accuracy)

Base   ST1

Delta2x ST2

Deltafull ST3
Analytics Pipeline n (high accuracy)

Analytics Pipeline 2 (medium accuracy)

Analytics Pipeline 1 (low accuracy)

Storage Hierarchy

base = L4x

base + delta2x

base + delta2x + 
deltafull

Refactoring 
(decimation,  
compression)

Retrieving &
Reconstruction



Data	refactoring
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Mesh (Full) Mesh (4x reduction)
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1.	Mesh	decimation

2.	Delta	calculation

3.	Floating-point	
compression



Mesh	decimation
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Delta	Calculation
• For	mesh	data,	it’s	common	that	
each	vertex	corresponds	to	a	value	
(floating-point)
• After	triangular	mesh	decimation:

deltaln = F(Vl
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Compression
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• The	floating-point	values	corresponding	to	vertexes	
are	compressed	using	ZFP	compressor

•A	potential	optimization	to	our	framework	is	
supporting	adaptive	compressors	based	on	dataset	
features	



Progressive	data	exploration	(reverse	the	
data	refactoring	procedures)
• I/O	(read	the	base	dataset	and	deltas)
•Decompression
•Restoration
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Performance	gain	of	Canopus	for	data	analytics
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Impact	on	Data	Analytics
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Original 2x	reduction 4x	reduction

8x	reduction 16x	reduction 32x	reduction



A	quantitative	evaluation	of	blob	detection
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Overview

• Storage	stacks	of	HPC	systems	

• Progressive	data	refactoring		

• Conclusion	and	future	work	
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Conclusion
• Lossy compression	may	devastate	the	usefulness	of	
data	to	achieve	high	compression	ratio	(such	as	100x)

• It	is	critical	to	compress	data	in	multiple	orthogonal	
dimensions	such	as	accuracy	and	resolution

•Canopus	combines	mesh	compression	and	floating-
point	compression,	possibly	delivering	a	high	
compression	ratio without	devastate	the	usefulness	of	
data
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Future	work
• Investigate	the	impact	of	lossy compression	on	
analytical	applications	other	than	visualization
• Original	data	A == B,	compressed	data	A’ == B’ ?

• F(D) == F(D’)?	F is	a	function
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Thanks & Questions
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