

Managing Array of SSDs When the Storage Device is No Longer the Performance Bottleneck

Byung S. Kim, Jaeho Kim, Sam H. Noh

UNIST (Ulsan National Institute of Science & Technology)

Outline

- Motivation & Observation
- Our Idea
 - Provide full network performance
 - Eliminate inconsistent performance
- Evaluation
 - Full network bandwidth
 - Consistent performance
- Summary & Future work

Outline

- Motivation & Observation
- Our Idea
 - Provide full network performance
 - Eliminate inconsistent performance
- Evaluation
 - Full network bandwidth
 - Consistent performance
- Summary & Future work

SSD Garbage Collection: Degraded Performance

SSD Garbage Collection: Inconsistent Performance

Intel Solid-State Drive DC S3700 Series – Quality of Service, "http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/ssd-dc-s3700-quality-service-tech-brief.pdf."

Rise of All-Flash Array

Improving performance for application request

	→ Which apps are flashy?				
ı	Database applications	48%	52%		
۰	Virtualization	35% 41	%		
Oı	nline transaction processing	26% 21%	I		
	Virtual desktop infrastructure	21% 27%			
	Big data analytics	19% 21%			
	ERP	14 14			
ар	Web and plication serving	14 18			
9	Finance/ HR applications	14 13	CURRENTLY USING FLASH		
	CRM	11 11	■ PLAN TO USE FLASH		
E	Science/ Engineering apps	8 10			
	Messaging	7 9			

Architecture of All-Flash Array

Architecture of All-Flash Array

Interface Bandwidth Growth Trend

Interface Bandwidth Growth Trend

Commercial SSD Trend

SSD product	Read performance	Write performance
Product A	6.8GB/s	4.8GB/s
Product B	3.5GB/s	2GB/s
Product C	2.7GB/s	1.5GB/s

Fibre channel: 1GB/s

Commercial All-Flash Array Trend

All-Flash Array products	# of SSDs	# of network ports
Product A	10	Up to 4
Product B	150	Up to 48
Product C	68	Up to 2
Product D	96	Up to 4

• Up to 34 SSDs per network port

Commercial All-Flash Array Trend

All-Flash Array products	# of SSDs	# of network ports
Product A	10	Up to 4
Product B	150	Up to 48
Product C	68	Up to 2
Product D	96	Up to 4

• Up to 34 SSDs per network port

Performance of RAID 0 with 4 SSDs

RAID 0: Inconsistent Performance

Performance of RAID 0 with 4 SSDs

Limited by Network Bandwidth

Performance is limited by network bandwidth

Another motivation: provide full network performance under network connection

Limited by Network Bandwidth

Performance is limited by network bandwidth

Another motivation:

provide full network performance
under network connection

Sustained full network performance

Problem and Our Goal

All-Flash Array suffers from inconsistent, limited performance

We want consistent, full network performance!

Outline

- Motivation & Observation
- Our Idea
 - Provide full network performance
 - Eliminate inconsistent performance
- Evaluation
 - Full network bandwidth
 - Consistent performance
- Summary & Future work

Our Solution

Serial configuration

Serial Configuration Design

- Provide full network performance
 - Absorb all writes with Front-end SSD
 - Log-structured manner
- Provide consistent performance
 - Eliminate GC within Front-end SSD
 - Propose xGC

Full Network Performance

- **Absorb all writes with Front-end SSD**
 - Network bandwidth < Front-end SSD bandwidth

- **Log-structured manner**
 - Sequential, append only writes

Blocks

Issues in Providing High Performance

- Front-end SSD will eventually fill up
 - Garbage Collection?
- Managing Front-end SSDs
 - Selecting next Front-end
 - Making space available

Handling Garbage Collection

- Eventually, the Front-end SSD becomes full and garbage collection is needed
- External GC (xGC)
 - Garbage collection never occurs at Front-end SSD

Handling Garbage Collection

- When the Front-end SSD fills up
 - New Front-end is selected
 - Old Front-end SSD becomes a Back-end SSD
- External GC (xGC) is performed between Back-end SSDs

Handling Garbage Collection

- When all valid data is moved
 - Old front-end is cleaned by issuing TRIM command

Effect of xGC

Front-end performance is not affected by GC

Front-end always provides consistent performance

Outline

- Motivation & Observation
- Our Idea
 - Provide full network performance
 - Eliminate inconsistent performance

Evaluation

- Full network bandwidth
- Consistent performance
- Summary & Future work

Evaluation Settings

Description					
	Storage Server	Host Server			
CPU	Intel Xeon E5-2609	Intel i5-6600k			
RAM	64GB DRAM	16GB DRAM			
Ethernet	10Gbps				
OS	Linux kernel 4.4.43	Linux kernel 4.3.3			
SSD	Intel 750 400GB NVMe SSD × 4 (spec. read: 2400MB/s, write: 1200MB/s) (Measured read: 2000MB/s, write 1000MB/s)				

Evaluation Settings

Observe effect of network connection

Observe effect of serial configuration

- Transfer 10 files (respectively, 10GB) with 10 threads to storage server via FTP protocol
- Measurement point is the storage server

Conclusion of First Evaluation

- Performance is determined by network independent of performance of storage
 - Performance of our approach is similar to that of RAID 0 with 4 SSDs

Observe Effect of Serial Configuration

- Performance with network effect removed
 - Verify performance of serial configuration
- Synthetic workload generated by FIO benchmark tool
 - Perform I/O for 30 minutes after aging
 - 1200GB footprint
 - 256KB random writes
 - Measure performance of random write workload with 64KB I/O size

Verifying Consistent Performance

4 NVMe SSDs (spec. read: 2400MB/s, write: 1200MB/s) (Measured read: 2000MB/s, write 1000MB/s)

Time (second)

In Contrast to RAID 0 Configuration

Verifying Consistent Performance

4 NVMe SSDs (spec. read: 2400MB/s, write: 1200MB/s)

o tan 'san 'san 'san ean 'san ean 'san ean dan tan tan tsan tsan ten ten ten ten ten 'san 'san 'san 'san 'san ' Lime (second)

Outline

- Motivation & Observation
- Our Idea
 - Provide full network performance
 - Eliminate inconsistent performance
- Evaluation
 - Full network bandwidth
 - Consistent performance
- Summary & Future work

Summary

- All-Flash Array is faster but limited by network bandwidth
- All-Flash Array suffers from inconsistent performance due to garbage collection
- Proposed technique that satisfies
 both full network performance and consistent performance

Future Work

- Fault-tolerance
- Parallelization of serial configuration
 - One serial configuration per network port
- Scalability
 - More than 4 SSDs
 - Heterogeneous SSDs
- Metadata management
- Latency performance
- Effect on read performance

Thank you

