
Enabling NVMe WRR support in Linux Block Layer

USENIX HotStorage’17

Kanchan Joshi, Praval Choudhary, Kaushal Yadav
Memory solutions, Samsung Semiconductor India R&D

Outline

 NVMe I/O queues

 Arbitration methods and WRR

 What it takes to build differentiated I/O service

 Affinity based method and its drawback

 Proposed method

 Results

 Summary

NVMe I/O Queues
HOST IO Queues NVMe SSD

NVMe I/O Queues
HOST IO Queues NVMe SSD

 Per-CPU queue pair Parallel I/O distribution Fast core-local path

Arbitration Methods

Arbitrate

Round-Robin (RR)

Controller

Arbitration Methods

Arbitrate

Weight 3

Weight 2

Weight 1

Medium

High

Low

Arbitrate

Round-Robin (RR)

Weighted Round-Robin with urgent priority (WRR)

Controller

Controller

Problem Statement

How to make prioritization capability (WRR) benefits reach to
Applications!

WRR Support Requirements

I/O Prioritization

 Need to create prioritized
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can
specify I/O service?

 Per-application or per I/O?

WRR Support Requirements

SQ

SQ

SQ

SQ

Non-prioritized queues

SQ

SQ

SQ

Prioritized queues

SQ

URGENT HIGH

MEDIUM LOW

I/O Prioritization

 Need to create prioritized
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can
specify I/O service?

 Per-application or per I/O?

WRR Support Requirements

SQ

SQ

SQ

SQ

Non-prioritized queues

SQ

SQ

SQ

Prioritized queues

SQ

URGENT HIGH

MEDIUM LOW

APP1

APP2

APP3

APP4

IO classification
method

SQ

SQ

SQ

SQ

I/O Prioritization

 Need to create prioritized
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can
specify I/O service?

 Per-application or per I/O?

Affinity-based Method

 Prioritization method: Each core hosts one type of submission queue (1:1 mapping)

 Classification method: Affine applications to particular core(s)

CORE 3

SQ CQ

L

O

W

CORE 2

SQ CQ

M

E

D

I

U

M

CORE 1

SQ CQ

H

I

G

H

CORE 0

SQ CQ

U

R

G

E

N

T

NVMe Controller

Affinity-based Method

 Prioritization method: Each core hosts one type of submission queue (1:1 mapping)

 Classification method: Affine applications to particular core(s)

CORE 3

SQ CQ

L

O

W

CORE 2

SQ CQ

M

E

D

I

U

M

CORE 1

SQ CQ

H

I

G

H

CORE 0

SQ CQ

U

R

G

E

N

T

NVMe Controller

Affine Affine Affine Affine

URGENT HIGH MEDIUM LOW

Drawbacks

 All running applications must be affined
(Arbitrary I/O performance otherwise)

Drawbacks

 All running applications must be affined
(Arbitrary I/O performance otherwise)

C1

HIGH PRIORITY

C3

LOW PRIORITY

C2

MEDIUM PRIORITY

 Reduction in compute-ability

 Mandatory affinity leading to
asymmetric core-utilization

Proposed Method: I/O Priority-based

I/O Prioritization

 Create prioritized I/O queues
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to
existing I/O priority classes

 Per-application

Proposed Method: I/O Priority-based

I/O Prioritization

 Create prioritized I/O queues
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to
existing I/O priority classes

 Per-application

CORE 0

SQ CQ

U

R

G

E

N

T

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

Proposed Method: I/O Priority-based

APP1

APP2

APP3

APP4

IO scheduling class

NVMe queue priority

SQ

SQ

SQ

SQ

I/O Prioritization

 Create prioritized I/O queues
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to
existing I/O priority classes

 Per-application

CORE 0

SQ CQ

U

R

G

E

N

T

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

 Compute-ability unaffected Does not require modifying applications

I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

Real-time

 Compute-ability unaffected Does not require modifying applications

I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

Real-time Best-effort None Idle

 Compute-ability unaffected Does not require modifying applications

Modified NVMe Stack (4.10 Kernel)

VFS/Page cache

Single-queue Multi-queue

deadline

CFQ

NVMe driver
(Modified)

SATA driver

Block Layer

 Specify io-priority class value
while running (ionice)

 This is stored in io_context
inside task_struct

 Obtain io-class value from
io_context (or from request)

 Map io-class to queue-priority
value and place command in
corresponding SQ

Real-time Urgent

Best-effort

None

Idle

High

Medium

Low

Ionice example on NVMe

Best-effort

210K

High

Idle

75.8K

Low

None

143K

Medium

Experimental Setup

 Linux 4.10 Kernel
(Modified NVMe Driver)

 Dell R720 server
 32 CPUs (2 NUMA nodes)
 32 GB RAM

 Samsung PM1725a SSD
(With WRR arbitration)

Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs
 QD 64
 4K record

Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs
 QD 64
 4K record

Weight-based

distribution

Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs
 QD 64
 4K record

Weight-based

distribution

420 420 423 419

Result #2

 Bandwidth distribution among 3 applications

Application configuration
 4 FIO jobs
 QD 64
 128K record

Result #2

 Bandwidth distribution among 3 applications

Application configuration
 4 FIO jobs
 QD 64
 128K record

Weight-based

distribution

Result #3

 Foreground/Background IO control

Result #3

 Foreground/Background IO control

Foreground Read IOPS

 WRR mode
 Background process can be throttled
 16:1 = Throttle BG process
 128:1 = Further throttling. Retains

foreground performance

 RR mode
 Sharp decline in IOPS
 Background process cannot be throttled

Summary

 Differentiated I/O service for applications can be built using WRR arbitration

 Scheduler-independent prioritization: Applications get the advantage of the prioritization natively present
inside the device

 Proposed method does not reduce compute-ability of applications

 By not introducing new interface/API, need of rebuilding application is avoided

 Future work
 Kernel patch
 Sysfs support for run-time WRR configuration

Acknowledgements
Rajesh Sahoo, Anshul Sharma, Sungyoung Ahn, Manoj Thapliyal, Vikram Singh, and Seunguk Shin

