
Improving Flash Storage Performance
by Caching Address Mapping Table in

Host Memory

2017.07.11

Presented at USENIX Hotstorage by

Joo-Young Hwang
(jooyoung.hwang@samsung.com)

Wookhan Jeong, Yongmyung Lee, Hyunsoo Cho, Jaegyu Lee,
Songho Yoon, Jooyoung Hwang, and Donggi Lee

Problem Definition
• Mobile apps are random read performance

hungry.

• Bottlenecks of random read in mobile storage
– Limited parallelism (due to smaller density than

desktop SSD)

– L2P metadata (due to constraints on form
factor/power consumption/cost)

What is FTL’s L2P Metadata?

• L2P: Logical to physical address translation

.

.

.

Flash erase block #0

3~4 7~8

8KB write @ LBA 7

11~14

15~18 0 8

4KB write @ LBA 8

Page #0

Page #1

Page #2

LBA EB Page Offset

0 0 2 0

1

2

3 0 0 0

4 0 0 1

5

6

7 0 0 2

8 0 0 3

…

L2P table

L2P Metadata Size Issue

• 1 L2P entry: 4Bytes (for 4KB logical block)

• For 128GB storage, total L2P size is

128MB which is too large to keep in

controller memory.

On-Demand L2P Loading
• Loads a proper L2P page on

demand.

• Performs well for reads with
good locality.

• For random reads, L2P
loading occurs more.
– 1 L2P page (16KB) may

contain 4K entries, and
covers 16MB logical block
address range.

Storage

controller
Controller

memory

NAND

Host

memory

HCI

CPU

Read request

Load L2P (if hit)

Load L2P
(if miss)

Load data

Data

Mobile workload pattern

• QD1 random reads

• Prediction and L2P prefetching?

Our Approach

• HPB (Host-aware Performance Booster):

Collaboration between host and device

• In essence,

– Cache L2P in host memory,

– Host driver includes L2P in I/O request to avoid L2P

loading from flash.

Overview

Storage

controller
Controller

memory

NAND

Host

memory

HCI

CPU

Verify Host-provided L2P
 - authorized information?
 (detect tampering)
 - up-to-date?
 (detect old information)

Dirty L2P

groups

L2P cache
Host-side L2P Cache
 - device-provided L2P bookkeeping
 - include L2P per read request

Device-side L2P Manager
 - maintains dirty groups
 - provide L2P

L2P cache update protocol

Read Request Processing in HPB
Host Memory

Host Controller
Interface

Host I/F

CPU + Logic

NAND I/F

NAND Flash memory
D

ev
ic

e
m

e
m

o
ry

Host
System
(+HPB)

Storage
Device
(+HPB)

(1)

(2)

(3)

(4)

(5)

(6)

(1) Read L2P entry

(2) Fetch read command

(3) Request L2P entry

(4) Read L2P entry

(5) Request user data

(6) Transfer user data

(1) (2) (3) tR (L2P map) (4) (5) tR (data) (6)

(1) (2) (5) tR (data) (6)

t

t

Case1: Host-side L2P Cache miss

Case2: Host-side L2P Cache hit

tR : NAND page read latency

L2P Cache Updates

L2P group 0

LBA PPN

0 100

1 101

2 102

3 106

L2P group 1

LBA PPN

4 10

5 14

6 203

7 204

L2P Group 0

LBA PPN

0 100

1 101

2 102

3 106

L2P Group 1

LBA PPN

4 10

5 14

6 203

7 204

Group # Validity

0 X

1 O

2 O

3 O

... ...

L2P dirty bitmap

(controller memory)

905

L2P Map

(NAND)

Host-side L2P Cache
(Host memory)

Device

Notify “need to update”

Request L2P for Group 0

Returns L2P for Group 0
900

L2P changes due to
host writes,
garbage collection,
and wear leveling.

L2P Cache Updates (cont’d)
• Two ways to update the cache

– Host initiated: host issues commands to fetch L2P of a group.

• Device notifies host of dirty group in response packet.

– Device initiated: device piggybacks L2P in response packets.

Implementation in UFS
• UFS (Universal Flash Storage)

– Successor of eMMC, shipped in smartphones since 2015.

– Layered architecture, uses SCSI command sets

– UFS 2.0 600MB/s per lane, max 2 lanes

Delivering L2P Hints

READ16 CDB for HPB

B \ b 7 6 5 4 3 2 1 0

0 OPERATION CODE (88h)

1 PDPROTECT DPO FUA RSV FUANV HPB

2

...

5

6

...

9

10

...

13

14

L2P entry

Logical block address

Transfer Length

• Modify READ(16) commands to include L2P.

– READ(16): 8Bytes LBA, 4Bytes Transfer Length

– Modified READ(16): 4Bytes L2P, 4Bytes LBA, 4 Bytes Transfer Length

Experimental Results

tiobench 4KB RR (Random Read) performance
tiobench SR(Sequential Read), SW(Sequential Write), RW(Random Write) performance.

• 59~67% random read performance improvements

• Little or no effect on sequential R/W and random write performances

Experimental Results (cont’d)

Mixed pattern performance (4KB record size, 1GB I/O issue, 16 threads).

In RW(x:y), x is read portion and y is write portion.

• HPB shows better performance in overall R:W mix ratio

and chunk sizes (4 ~ 512KB).

Further Works
• Standardization

– EHS(Extra Header Segment) in UFS 3.0

• Host can deliver L2P for a chunk that is physically fragmented.

• Host-side memory management

– Deal with host memory pressure

• More performance benchmark

– Benefits in phone user scenarios

• L2P verification implementation

L2P Verification
• Check if a host-provided L2P has not been tampered.

• Requires encrypt/decrypt hardware support to avoid
overhead.

Random Seed LBA PPN Signature

Encryption Key Encryption Data

Encrypted data

Related Works

NVMe
SSD SSD CPU

NAND

P
C

Ie
 I

/F

NAND

NAND I/F

CPU

Host
system

Memory

 HMB

P
C

I
E

x
p

re
ss

• Other approaches

– Interconnects that allows device to access host memory directly.

: PCIe/NVMe provides HMB (Host Memory Buffer)

: UFS UME (Unified Memory Extension)

– Static allocation of host memory

– Latency of accessing host memory from device

is in critical path.

Summary

• HPB (Host Performance Booster)

– Improve random read performance by caching L2P

map in host memory and delivering L2P hint when

sending I/O request.

• HPB implementation in UFS

– Modified READ(16) to piggyback L2P hints.

• Improved random read performance by 59~67%

