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Problem Definition 
• Mobile apps are random read performance 

hungry. 

 

• Bottlenecks of random read in mobile storage 
– Limited parallelism (due to smaller density than 

desktop SSD) 

– L2P metadata (due to constraints on form 
factor/power consumption/cost) 



What is FTL’s L2P Metadata? 

• L2P: Logical to physical address translation 
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L2P Metadata Size Issue 

• 1 L2P entry: 4Bytes (for 4KB logical block) 

• For 128GB storage, total L2P size is 

128MB which is too large to keep in 

controller memory. 



On-Demand L2P Loading 
• Loads a proper L2P page on 

demand. 

• Performs well for reads with 
good locality. 

 

• For random reads, L2P 
loading occurs more. 
– 1 L2P page (16KB) may 

contain 4K entries, and 
covers 16MB logical block 
address range. 
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Mobile workload pattern 

• QD1 random reads 

 

• Prediction and L2P prefetching? 



Our Approach 

• HPB (Host-aware Performance Booster): 

Collaboration between host and device 

 

• In essence, 

– Cache L2P in host memory, 

– Host driver includes L2P in I/O request to avoid L2P 

loading from flash. 



Overview 

Storage 

controller 
Controller 

memory 

NAND 

Host 

memory 

HCI 

CPU 

Verify Host-provided L2P 
  - authorized information? 
    (detect tampering) 
  - up-to-date? 
    (detect old information) 

Dirty L2P 

groups 

L2P cache 
Host-side L2P Cache 
  - device-provided L2P bookkeeping 
  - include L2P per read request 
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  - maintains dirty groups 
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L2P cache update protocol 



Read Request Processing in HPB 
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L2P Cache Updates 
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L2P Cache Updates (cont’d) 
• Two ways to update the cache 

– Host initiated: host issues commands to fetch L2P of a group. 

• Device notifies host of dirty group in response packet. 

– Device initiated: device piggybacks L2P in response packets. 



Implementation in UFS 
• UFS (Universal Flash Storage) 

– Successor of eMMC, shipped in smartphones since 2015. 

– Layered architecture, uses SCSI command sets 

– UFS 2.0 600MB/s per lane, max 2 lanes 



Delivering L2P Hints 
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• Modify READ(16) commands to include L2P. 

– READ(16): 8Bytes LBA, 4Bytes Transfer Length 

– Modified READ(16): 4Bytes L2P, 4Bytes LBA, 4 Bytes Transfer Length 



Experimental Results 

tiobench 4KB RR (Random Read) performance 
tiobench SR(Sequential Read), SW(Sequential Write), RW(Random Write) performance. 

• 59~67% random read performance improvements 

• Little or no effect on sequential R/W and random write performances 



Experimental Results (cont’d) 

Mixed pattern performance (4KB record size, 1GB I/O issue, 16 threads). 

In RW(x:y), x is read portion and y is write portion. 

• HPB shows better performance in overall R:W mix ratio 

and chunk sizes (4 ~ 512KB). 



Further Works 
• Standardization 

– EHS(Extra Header Segment) in UFS 3.0 

• Host can deliver L2P for a chunk that is physically fragmented. 

• Host-side memory management 

– Deal with host memory pressure 

• More performance benchmark 

– Benefits in phone user scenarios 

• L2P verification implementation 



L2P Verification 
• Check if a host-provided L2P has not been tampered. 

• Requires encrypt/decrypt hardware support to avoid 
overhead. 
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Related Works 

NVMe 
SSD           SSD CPU 

 

 

NAND 

P
C

Ie
 I

/F
 

NAND 

NAND I/F 

CPU 

Host 
system 

Memory 

 

 HMB 

P
C

I 
E

x
p

re
ss

 

• Other approaches 

– Interconnects that allows device to access host memory directly. 

: PCIe/NVMe provides HMB (Host Memory Buffer) 

: UFS UME (Unified Memory Extension) 

 

– Static allocation of host memory 

– Latency of accessing host memory from device  

is in critical path. 



Summary 

• HPB (Host Performance Booster) 

– Improve random read performance by caching L2P 

map in host memory and delivering L2P hint when 

sending I/O request. 

• HPB implementation in UFS 

– Modified READ(16) to piggyback L2P hints. 

• Improved random read performance by 59~67% 




