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Can we exploit 
ephemeral data to 

enable elastic storage? 



What if files could 
contract and expand? 

 



 expand() obtains the raw bytes of the file 

 Run computations (e.g. compression) 

 Fetch data across a network 

 Operate over other files on the FS 
 

 

 contract()  deletes raw bytes, retains motif code 

 

 

 

A motif is code to generate the data in a file 

Motifs can be 
recursive 

Motifs can 
have circular 

dependencies 

Files can have 
multiple 
motifs 
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Which files should be contracted or 
expanded? 

What interface can the conductor use? 



 Feed info into optimization mechanism 
 Choose files with minimum total expansion 

latency s.t. contraction saves sufficient space. 

 Most competitive algorithm: Greedily choose 
files on LRU list to maximize ratio of space 
savings to expansion latency 

harmnium FS  GB limit 

When will the file be 
accessed next? 

How much time will 
it take to expand? 
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 User-space FUSE prototype 
 Conductor: Python, via UNIX sockets 

 
 Workload 
 Set of 54,000 patch files applied in 

chronological order to the Linux kernel 

 
 Motif 
 Network storage via scp 

 
 Measure latency to access first byte  



 

No size 
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Elastic performance/capacity 
trade-off for storage in VMs 

Problem 
Applications store 

ephemeral data on 
secondary storage 
But storage stacks 
provide durability 

for every file 

harmnium  
Associate motifs with 

every file, allowing 
reconstruction 

Contract/expand 
files to minimize 

access latency 

Results 
Best algorithm: LRU 
greedily maximizing 

space/latency 

Fully functional 
FUSE prototype 



 



 0-1 Knapsack (NP-complete) 
 S = space needed to save 

 𝒆𝒊 = expected expansion latency for file i 

 𝒔𝒊 = expected storage savings for file I 

 

 

 

 

 
 Reduction: Choose the files not to include 
 APX-knapsack takes O(nW) time, prohibitive 



 Trade-off between storage footprint and 
performance 
 Usually in distributed settings 

 Sierra (EuroSys 2011), Rabbit (SOCC  2011), 
Springfs (FAST 2014), … 

 
 These systems maintain 1 to N copies of 

each file 
 

 harmium, however, maintains “0 to 1” 
copies of each file 



 A compression file system? 
 A glorified cache? 
 A de-duplication system? 
 Harmium can support arbitrary motifs: 
▪ Compression of rarely accessed files 

▪ Remote network storage [scp/rsync/nfs/…] 

▪ Pull from repositories [git/svn/…] 

▪ Re-wget data in Downloads folder 

▪ Resume torrent download [remove partial files] 

▪ System packages [retrieve from apt/debian/...] 

▪ Regeneration of data sets [ala Nectar] 

▪ … 

 



 Motifs are really arbitrary code  
 Can cause system to hang, crash, corrupt data or 

consume resources wastefully 
 Our current implementation is vulnerable 
 Motifs execute within the same process as the FS 

 Isolation by virtualization too coarse-grained 

 Sandboxing great for security, may be slow 

 
 Ongoing work: require authorization 
 Users specifically approve running of motifs 

generated by those of lesser privilege or fewer 
capabilities 



 “But isn’t computation more expensive than 
storage?” 

 Underlying principle of our work: 

Computation, Network and Storage  

are fungible 
 Harmonium allows use of  Computation or 

Network when Storage is scarce 
 Other parts of the trade-off interesting as 

well! 

 


