
harmnium

Helgi Kr.
Sigurbjarnarson RU

Pétur O.
Ragnarsson RU

Ymir
Vigfusson RU

Mahesh
Balakrishnan MSR

VM VM VM

Hypervisor

Hardware

RAM CPU Storage

Host cannot
reclaim space
from virtual

disk

Virtual disk
cannot expand

beyond its
fixed capacity

http://xkcd.com/1360/

 Significant ephemeral data

0% 20% 40% 60% 80% 100%

System 1

System 2

System 3

Space occupied by file types (3 developer laptops)

Swap Cache Media ASCII

Document System Other Free space

Could be
recomputed

Could be
compressed

 Significant ephemeral data

0% 20% 40% 60% 80% 100%

System 1

System 2

System 3

Space occupied by file types (3 developer laptops)

Swap Cache Media ASCII

Document System Other Free space

Could be
recomputed

Could be
compressed

Can we exploit
ephemeral data to

enable elastic storage?

What if files could
contract and expand?

 expand() obtains the raw bytes of the file

 Run computations (e.g. compression)

 Fetch data across a network

 Operate over other files on the FS

 contract() deletes raw bytes, retains motif code

A motif is code to generate the data in a file

Motifs can be
recursive

Motifs can
have circular

dependencies

Files can have
multiple
motifs

VM VM

 VM

Hypervisor

Virtual disk

harmium FS
Large

address
space

Limit on
total size

20GB

250GB

VM VM

 VM

Hypervisor

Virtual disk
Conductor

harmium FS
20GB

250GB

10GB

VM VM

 VM

Hypervisor

Virtual disk
Conductor

harmium FS
Large

address
space

Limit on
total size

20GB

250GB

10GB

Which files should be contracted or
expanded?

What interface can the conductor use?

 Feed info into optimization mechanism
 Choose files with minimum total expansion

latency s.t. contraction saves sufficient space.

 Most competitive algorithm: Greedily choose
files on LRU list to maximize ratio of space
savings to expansion latency

harmnium FS  GB limit

When will the file be
accessed next?

How much time will
it take to expand?

VM VM

 VM

Hypervisor

harmnium FS
20GB

250GB

TRIM

Virtual disk
Conductor

 User-space FUSE prototype
 Conductor: Python, via UNIX sockets

 Workload
 Set of 54,000 patch files applied in

chronological order to the Linux kernel

 Motif
 Network storage via scp

 Measure latency to access first byte

No size
constraints

Use ≤450MB

Size constraint
lifted Use ≤650MB

Elastic performance/capacity
trade-off for storage in VMs

Problem
Applications store

ephemeral data on
secondary storage
But storage stacks
provide durability

for every file

harmnium
Associate motifs with

every file, allowing
reconstruction

Contract/expand
files to minimize

access latency

Results
Best algorithm: LRU
greedily maximizing

space/latency

Fully functional
FUSE prototype

 0-1 Knapsack (NP-complete)
 S = space needed to save

 𝒆𝒊 = expected expansion latency for file i

 𝒔𝒊 = expected storage savings for file I

 Reduction: Choose the files not to include
 APX-knapsack takes O(nW) time, prohibitive

 Trade-off between storage footprint and
performance
 Usually in distributed settings

 Sierra (EuroSys 2011), Rabbit (SOCC 2011),
Springfs (FAST 2014), …

 These systems maintain 1 to N copies of

each file

 harmium, however, maintains “0 to 1”
copies of each file

 A compression file system?
 A glorified cache?
 A de-duplication system?
 Harmium can support arbitrary motifs:
▪ Compression of rarely accessed files

▪ Remote network storage [scp/rsync/nfs/…]

▪ Pull from repositories [git/svn/…]

▪ Re-wget data in Downloads folder

▪ Resume torrent download [remove partial files]

▪ System packages [retrieve from apt/debian/...]

▪ Regeneration of data sets [ala Nectar]

▪ …

 Motifs are really arbitrary code
 Can cause system to hang, crash, corrupt data or

consume resources wastefully
 Our current implementation is vulnerable
 Motifs execute within the same process as the FS

 Isolation by virtualization too coarse-grained

 Sandboxing great for security, may be slow

 Ongoing work: require authorization
 Users specifically approve running of motifs

generated by those of lesser privilege or fewer
capabilities

 “But isn’t computation more expensive than
storage?”

 Underlying principle of our work:

Computation, Network and Storage

are fungible
 Harmonium allows use of Computation or

Network when Storage is scarce
 Other parts of the trade-off interesting as

well!

