Microsoft

Research

harmenium
Elastic Cloud Storage via File Motifs

Elasticity

Virtual disk
cannot expand
beyond its
fixed capacity

Host cannot
reclaim space
from virtual

: ”"f - g . ¥ >
Storage ;
:«_.r b¢;’.

No storage elasticity

http://xkcd.com/1360/

PAAFILES
a4 Mp @

poL
@ OL T
&) '

i
j T
JOKES. T BiDK

A By
< o
I 5
- =
z »
2 -
e ot
*y ok

Not all data requires durability

Could be
recomputed

ccupied by file types

System 3

Could be
Pystem 2 e - compressed

~——

0% 20% 40% 60% 80% 100%

T Swap M@ Cache W Media mASCII
B Document B System @ Other M Free space

System 1

Significant ephemeral data @

Not all data requires durability

Could be
recomputed

ccupied by file types

Systenr ~ |

Systen D
Syster '

o Swap @ Cache W Media mASCII
B Document B System @ Other M Free space

Significant ephemeral data

What if files could
contract and expand?

The motif abstraction %

A motif is code to generate the data in a file

expand() obtains the raw bytes of the file
Run computations (e.g. compression)
Fetch data across a network
Operate over other files on the FS

contract() deletes raw bytes, retains motif code

- A,
L A
Ly 2
=z =
a .
e i
B\ &
o -
gl 4
Fig uwy

Motifs can be

Example network storage motif

class SCPMotif (object) :
def expand(self, fname, meta=None) :
p = fname.bypass/()
os.popen ("scp \
fileserverl:storagess "%3s"" 5 (p,p))

def contract (self, fname, meta=None) :

r = fname.bypass|()

os.popen(’'ssh fileserverl\
"mkdir —-p storage%s"’ %\
os.path.dirname (p))

1f os.popen('scp "%s"
fileserverl:storage%s’ 5 (p,p)) == 0:
open (p, w’) .close () ja&

The harmenium file system

Limit on
total size

harmeium FS

The harmenium file system

harmeium FS 10GB

ERe e

The harmenium file system

Conductor

Hypervisor

What files to contract/expand?

harmenium FS x GB limit
I
When will the file be How much time will
accessed next? It take to expand?

Feed info into optimization mechanism

Choose files with minimum total expansion
latency s.t. contraction saves sufficient space.

Most competitive algorithm: Greedily choose
files on LRU list to maximize ratio of space
savings to expansion latency

Conductor interface

VM
harmenium FS

1Ly ™.

l” I 1068} Conductor

Hypervisor

Evaluation

\

User-space FUSE prototype
Conductor: Python, via UNIX sockets

Workload

Set of 54,000 patch files applied in
chronological order to the Linux kernel

L

O git

Motif & ﬁ

Network storage via scp

Measure latency to access first byte

wu A
B e,
B T,
B "g‘;
= =
e 4
ety

t

C
| | | | | | | - —
C
e
5 5 —
c &
s — c I
()
] N
= (Vg
= o)
7 ‘7
S =
=y e,
= >
[nd 8a
5
TN S SC S N/ ‘ .
ORI
2R
= = S %620 % % -
D] (D]
| O - 50
: :
= =
o
o)
=
_ (@]
. <
= B
= =
o o)
@) @)

| Start

1 1 1 1 1 1
COoOO0OMNOLOTMAN
~—

constraints

]

O O O O O O
n o 1 o 1 O
© O 0 IO < <

(sw) Aousie| 814g-1s114-0) (gIN) 9z1s walsAs o)i4

Conclusion

Elastic performance/capacity

trade-off for storage in VMs

Problem

Applications store
ephemeral data on
secondary storage

But storage stacks
provide durability
for every file

Results

Best algorithm: LRU
greedily maximizing
space/latency

Fully functional
FUSE prototype

e lag
5 v
L T,
< s
= =
7 -
fs %
gl
T

Extra slides

Theoretical formulation

0-1 Knapsack (NP-complete)
S = space needed to save
e; = expected expansion latency for file i
s; = expected storage savings for file /

n
min E €;L;
1=1
n

s.t. Z S;T; > S,

i=1
r; €{0,1} , 1<i<n

Reduction: Choose the files not to include
APX-knapsack takes O(nW) time, prohibitive

+ e
T T

Related work

Trade-off between storage footprint and
performance

Usually in distributed settings

Sierra (EuroSys 2011), Rabbit (SOCC 2011),
Springfs (FAST 2014), ...

These systems maintain 1 to N copies of
each file

harm@ium, however, maintains “o to 1”
copies of each file

But isn’t this just ...

A compression file system?
A glorified cache?
A de-duplication system?

Harm@ium can support arbitrary motifs:
Compression of rarely accessed files
Remote network storage [scp/rsync/nfs/...]
Pull from repositories [git/svn/...]
Re-wget data in Downloads folder
Resume torrent download [remove partial files]
System packages [retrieve from apt/debian/...]
Regeneration of data sets [ala Nectar]

Security concerns

Motifs are really arbitrary code

Can cause system to hang, crash, corrupt data or
consume resources wastefully

Our current implementation is vulnerable
Motifs execute within the same process as the FS
Isolation by virtualization too coarse-grained
Sandboxing great for security, may be slow

Ongoing work: require authorization

Users specifically approve running of motifs
generated by those of lesser privilege or fewer
capabilities

Computation vs. storage

"But isn’t computation more expensive than
storage?”
Underlying principle of our work:

Computation, Network and Storage

are fungible
Harmonium allows use of Computation or
Network when Storage is scarce
Other parts of the trade-off interesting as
well!

