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Talk Overview

• Dramatic increase in storage I/O performance

• PCIe-attached flash

• Problem: OS storage stack becomes I/O bottleneck
• Shared stack -> high overhead per I/O op

• Solution: Application-level storage architecture
• Optimize storage stacks for each application

• Assume storage devices remain on peripheral bus

• How to structure OS & hardware?



Problem: Storage I/O Performance

• Storage performance matters
• Web servers
• File servers
• Key-value stores
• Persistent lock managers

• Storage performance is improving 
• PCIe attached flash
• Flash-backed caching RAID controllers

• CPU frequencies have stalled

• File system code expensive to run on CPU
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Today’s Storage Stack
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Our Storage Architecture
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Storage Hardware Model

• Virtual storage devices
• Protected command/DMA queues, interrupts

• Can be provided by current technology

• Virtual storage areas (VSAs)
• At least 1 per application

• Map to physical storage extents

• Protected in hardware

• Both managed by kernel
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High-Level API:
Persistent Data Structures

• Examples: log, queue, hash table, tree

• Operations immediately persistent
• To flash memory on storage peripheral

Goals:

• Scalability

• Robustness vs. crashes

• Low operation latency



Prototype Implementation

• In Arrakis OS
• Has similar architecture for the network

• User-level device driver for
Intel RS3 RAID controller

• Library of persistent data-structures
• Persistent log



Evaluation:
Redis NoSQL Store

• Redis logs operations to disk

• Modified to use TenaciousD log
• 109 LOC changed

• Redis-benchmark
• SET workload

• 64K keys

• 1K value size

• Compare to Linux on ext4
• Server-sided performance



Evaluation:
Redis NoSQL Store
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Summary

• New low-latency storage hardware

• Problem: Shared storage stack becomes bottleneck

• Arrakis: New OS storage architecture
• HW/SW co-design

• Application-level storage eliminates I/O bottleneck
• 9x speedup for Redis

• Scales with CPUs & storage HW performance

http://arrakis.cs.washington.edu


