
Towards High-Performance 
Application-Level

Storage Management

Simon Peter, Jialin Li, Doug Woos, Irene Zhang,
Dan R. K. Ports, Arvind Krishnamurthy,

Thomas Anderson, Mark Zbikowski

University of Washington

Funded in part by NetApp, Google



Talk Overview

• Dramatic increase in storage I/O performance

• PCIe-attached flash

• Problem: OS storage stack becomes I/O bottleneck
• Shared stack -> high overhead per I/O op

• Solution: Application-level storage architecture
• Optimize storage stacks for each application

• Assume storage devices remain on peripheral bus

• How to structure OS & hardware?



Problem: Storage I/O Performance

• Storage performance matters
• Web servers
• File servers
• Key-value stores
• Persistent lock managers

• Storage performance is improving 
• PCIe attached flash
• Flash-backed caching RAID controllers

• CPU frequencies have stalled

• File system code expensive to run on CPU



0

10

20

30

40

50

60

70

80

ext2 ext3 ext4 btrfs

System call 
duration [us]

fsync

write

File system CPU overheads
(writing 1K, then fsync)

= 25ms = 1ms

25us

15us



Today’s Storage Stack

Application

Filesystem (block management)

User-level

Kernel

HAL & I/O scheduler

Driver

VFS (name management)

Application

Buffer cache
Data
Path

POSIX
API

Shared

Very
general

Low-level



Our Storage Architecture

Storage stack (block 
mgmt & cache)

Application Application

User-level

VFS &
Space mgmt

Kernel

Driver (HAL)

Storage stack (block 
mgmt & cache)

Driver (HAL)

High-level 
API

Hardware
Virtualized
Storage
Controllers

App 
specific Off 

data 
path



Storage Hardware Model

• Virtual storage devices
• Protected command/DMA queues, interrupts

• Can be provided by current technology

• Virtual storage areas (VSAs)
• At least 1 per application

• Map to physical storage extents

• Protected in hardware

• Both managed by kernel



Application

Storage Hardware Model: Example

Kernel

Flash memory

Free space Free space

Free space

Used

Used

VSA

Free space

create_vsa(1G)

HW
ops



VSA
VSA

/tmp/lockfile

/var/lib/key_value.db

/etc/config.rc

…

Global File Name Resolution

Kernel

Application

open(“/etc/config.rc”)

Application
HW
ops



High-Level API:
Persistent Data Structures

• Examples: log, queue, hash table, tree

• Operations immediately persistent
• To flash memory on storage peripheral

Goals:

• Scalability

• Robustness vs. crashes

• Low operation latency



Prototype Implementation

• In Arrakis OS
• Has similar architecture for the network

• User-level device driver for
Intel RS3 RAID controller

• Library of persistent data-structures
• Persistent log



Evaluation:
Redis NoSQL Store

• Redis logs operations to disk

• Modified to use TenaciousD log
• 109 LOC changed

• Redis-benchmark
• SET workload

• 64K keys

• 1K value size

• Compare to Linux on ext4
• Server-sided performance



Evaluation:
Redis NoSQL Store

1x

9x

0

20

40

60

80

100

120

Throughput
[K transactions/s]

SET operations

• Cut SET latency by 81% (163 -> 31 us)

Intel RS3
[25us]

Intel RS3
[25us]

ioDrive2
[15us]



Summary

• New low-latency storage hardware

• Problem: Shared storage stack becomes bottleneck

• Arrakis: New OS storage architecture
• HW/SW co-design

• Application-level storage eliminates I/O bottleneck
• 9x speedup for Redis

• Scales with CPUs & storage HW performance

http://arrakis.cs.washington.edu


