Assert(!Defined(Sequential I/O))

Cheng Li*, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong Shim

*Rutgers University EMC Corporation

Sequential I/O is Important

- Driven by traditional storage characteristics
 - Optimization based on sequentiality (hard drive, tapes)
 - Applications leverage sequentiality: e.g., cache, prefetch
- Non-rotational devices favor sequential I/O
 - Large unit SSD writes to reduce erasures
- Help classify workload characteristics
 - Benefit system researchers, trace analysis, I/O generation
 - Consistent metric makes results comparable

Sequential I/O is NOT Straightforward

- Definition of sequential I/O matters!
 - Sequentiality changes significantly based on definitions
- Inconsistent definitions of sequential I/O
 - "We consider two read or writes requests to be sequential if they are consecutive in time, and the file offset + request size of the first request equals the file offset of the second request." [Chen'11]
 - "...we consider sequential I/O as the number of bytes transferred before a random seek" [Shim'13]
 - "...this series to be sequential despite the missing 1k between the third and fourth requests." [Ellard'03]
- Data-driven approach to compare sequentiality definitions

Consecutive Access Ratio (CAR)

- Canonical definition
 - Fraction of consecutive accesses
 - Example: 4/4=100% vs. 2/4=50% (ignore first access)

Consecutive Bytes Accessed (CBA)

- I/O size should be incorporated
 - Consecutive bytes accessed between seeks
 - Example: 5*8KB/2 = 20KB vs. 5*4KB/2 = 10KB

Strided Range (SR)

- Non-consecutive accesses can be sequential
 - The range property allows gaps, small backward seeks, and re-access of an address to still be considered sequential.

Multi Streams (MS)

- Single stream vs. multiple streams
 - Multiple streams are interleaved
 - Multi-threading, virtual machines

Inter-arrival Time (IT)

- Think time between two I/Os
- Background tasks cause disk movement

Problem Recap

- Canonical consecutive access ratio (CAR)
 - Can be too restrictive
 - Insufficient to distinguish different access patterns
- Need to explore other metric alternatives
 - Captures important properties
 - Calibrates locality accurately
- Study different sequentiality metrics
 - Pick a metric that best aligns with the use case
 - Use standard statistics tools to study correlation

Sequentiality Metrics

• Metric table explores all property combinations

Family	Metric	SR	MS	IT	Metric	Family
F1 CAR- based (ratio)	M1				M9	F2 CBA- based (bytes)
	M2	Х			M10	
	M3		Х		M11	
	M4			Х	M12	
	M5	Х	Х		M13	
	M6	Х		Х	M14	
	M7		Х	Х	M15	
	M8	Х	Х	Х	M16	

SR=Stride Range MS=Multi-stream IT=Inter-arrival Time

Experimental Methodology

- Correlation analysis
 - Metrics have different range (ratio vs. size)
 - Compare rank order of traces to study correlation

© Copyright 2014 EMC Corporation. All rights reserved.

Correlation Matrix

- Compute for each metric-pair (total $16 \times 16 = 256$)
 - Use standard statistics tools (Spearman's ρ , Kendall's τ)

Traces

- Private traces
 - 294 EMC VMAX traces
- Public traces (94 in total)
 - 5 IBM-HP
 - 36 Microsoft research
 - 50 Microsoft production
 - 3 Florida International University (FIU)
- Covers both sequential and random traces

13

Comparing Sequentiality Metrics

Metric

- All accesses
 - Cross family
 - Family 1 (CAR)
 - Family 2 (CBA)
- Read accesses

Most/Least Sequential Comparison

- Most random
 - Cross family
 - Family 1 (CAR)
 - Family 2 (CBA)
- Most sequential
- Negative correlated

Sequentiality Over Time

- Calculate metric value every 10min
 - CAR-based м1, м5 (left-axis), CBA-based м9, м13 (right-axis)
- F2 metrics are more consistent than F1 metrics

Discussion

- Controversy of sequential I/O metrics
- I/O size matters
 - CBA based metrics are more consistent
- Strided range matters
 - Non-consecutive accesses can be sequential
- Incorporate domain knowledge
 - Apply domain knowledge and state your metric

O&A

Assert(!Defined(Sequential I/O))

Cheng Li*, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong Shim

*Rutgers University EMC corporation

