

Learning Sensitive Indoor Location From Unprotected Sensors On Mobile Devices

Huadi Zheng(Hardy), Haibo Hu

Department of Electronic and Information Engineering

The Hong Kong Polytechnic University

Privacy Concerns

Data collection scandal and protection

Particularly, Mobile Data

Various Sensors

Permission Mechanism

Unprotected

Motion Sensors: Accelerometer, Gyroscope...

Unprotected

Ambient Sensors: Magnetometer, Barometer, Light Sensor, Thermal Sensor ...

Side-channel Attack

[1]S. Narain, T. D. Vo-Huu, K. Block and G. Noubir, "Inferring User Routes and Locations Using Zero-Permission Mobile Sensors," 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, 2016, pp. 397-413.

[2]Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, G. Nakibly, "Powerspy: Location tracking using mobile device power analysis", *Proceedings of the 24th USENIX Conference on Security Symposium*, pp. 785-800, Aug. 2015

Key Observations

- Indoor? Complicated Design---> Pattern
- Sensitive? Victims Frequently Visit

Question

- Unprotected sensors as side channels
- Feasibility of detecting sensitive indoor locations when users pass by?
- ONE location is enough

System Design

Training phase:

- Target identification
- Data collection
- Data processing
- Model construction

Sensitive Locations

Just Need a Label

- Quick Self-developed Dataset
- Beacons, Wi-Fi, By Hand

Pre-processing

Build A Classifier

- Naive Bayesian
- K Nearest Neighbors
- Decision Tree
- Random Forest
- Support Vector Machine
- Neural Network

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

System Design

Attack phase:

- Spyware installed
- Monitoring
- Pattern occurs
- Deliver to attacker

Risk of Leakage

●15 Locations, 5 devices, 4 sensors, 5 victims

Devices	LG G3,
	Google Pixel,
	HTC U Ultra,
	Redmi Note4X,
	Samsung Galaxy S8
Selected Sensors	Accelerometer,
	Gyroscope,
	Magnetic Field Sensor,
	Linear Acceleration Sensor

Recognizer	Weighted Average
	F1-score
Decision Tree + Euclidean Norm(DTEN)	41.15%
Decision Tree + Rotation Matrix(DTRM)	52.09%
Random Forest + Euclidean Norm(RFEN)	62.86%
Random Forest + Rotation Matrix(RFRM)	73.26%

Threatening?

- Immune to Antivirus
- Massive Users, Cross Reference
- Plus Social Engineering

Upcoming Focus

Potential Defense

- Permission List
- Background Limit
- Frequency Limit
- Functional API

Attack Improve

- Stateful Inference
- Sensor Fusion
- Webpage Implant
- More Sensors

