
Memory Tagging
and how it improves

C/C++ memory safety
Kostya Serebryany, Google

Aug 2018
https://arxiv.org/pdf/1802.09517.pdf

In
5 m

inu
tes

https://arxiv.org/pdf/1802.09517.pdf

Memory Safety in C/C++ is a mess

● Heap-use-after-free
● Heap-buffer-overflow
● Stack-buffer-overflow
● Stack-use-after-return
● Stack-use-after-scope
● Global-buffer-overflow
● Use-of-uninitialized-memory
● Intra-object-buffer-overflow (separate story)

char *p = new char[20];

p[20] = … // OMG

delete [] p;

p[0] = … // OMG

 July 24, 2018
[$5000][850350] High CVE-2018-6153: Stack buffer overflow in Skia. Reported by Zhen Zhou ...
[$3000][848914] High CVE-2018-6154: Heap buffer overflow in WebGL. Reported by Omair on 2018-06-01
[$N/A][842265] High CVE-2018-6155: Use after free in WebRTC. Reported by Natalie Silvanovich...
[$N/A][841962] High CVE-2018-6156: Heap buffer overflow in WebRTC. Reported by Natalie Silvanovich ...
[$N/A][840536] High CVE-2018-6157: Type confusion in WebRTC. Reported by Natalie Silvanovich ...
[$2000][841280] Medium CVE-2018-6158: Use after free in Blink. Reported by Zhe Jin（金哲）...
[$2000][837275] Medium CVE-2018-6159: Same origin policy bypass in ServiceWorker.Reported by Jun Kokatsu ...
[$1000][839822] Medium CVE-2018-6160: URL spoof in Chrome on iOS. Reported by evi1m0 ...
[$1000][826552] Medium CVE-2018-6161: Same origin policy bypass in WebAudio.Reported by Jun Kokatsu ...
[$1000][804123] Medium CVE-2018-6162: Heap buffer overflow in WebGL. Reported by Omair on 2018-01-21
[$500][849398] Medium CVE-2018-6163: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-06-04
[$500][848786] Medium CVE-2018-6164: Same origin policy bypass in ServiceWorker.Reported by Jun Kokatsu
[$500][847718] Medium CVE-2018-6165: URL spoof in Omnibox. Reported by evi1m0 of Bilibili Security ...
[$500][835554] Medium CVE-2018-6166: URL spoof in Omnibox. Reported by Lnyas Zhang on 2018-04-21
[$500][833143] Medium CVE-2018-6167: URL spoof in Omnibox. Reported by Lnyas Zhang on 2018-04-15
[$500][828265] Medium CVE-2018-6168: CORS bypass in Blink. Reported by Gunes Acar and Danny Y. Huang of Princeton University, ...
[$500][394518] Medium CVE-2018-6169: Permissions bypass in extension installation .Reported by Sam P on 2014-07-16
[$TBD][862059] Medium CVE-2018-6170: Type confusion in PDFium. Reported by Anonymous on 2018-07-10
[$TBD][851799] Medium CVE-2018-6171: Use after free in WebBluetooth. Reported by amazon@mimetics.ca on 2018-06-12
[$TBD][847242] Medium CVE-2018-6172: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-05-28
[$TBD][836885] Medium CVE-2018-6173: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-04-25
[$N/A][835299] Medium CVE-2018-6174: Integer overflow in SwiftShader. Reported by Mark Brand of Google Project Zero on 2018-04-20
[$TBD][826019] Medium CVE-2018-6175: URL spoof in Omnibox. Reported by Khalil Zhani on 2018-03-26
[$N/A][666824] Medium CVE-2018-6176: Local user privilege escalation in Extensions.Reported by Jann Horn of Google Project Zero on 2016-11-18

Every 6-8 weeks on https://chromereleases.googleblog.com, since ~ 2011

 MT covers

all High CVEs

https://crbug.com/850350
https://crbug.com/848914
https://crbug.com/842265
https://crbug.com/841962
https://crbug.com/840536
https://crbug.com/841280
https://crbug.com/837275
https://crbug.com/839822
https://crbug.com/826552
https://crbug.com/804123
https://crbug.com/849398
https://crbug.com/848786
https://crbug.com/847718
https://crbug.com/835554
https://crbug.com/833143
https://crbug.com/828265
https://crbug.com/394518
https://crbug.com/862059
https://crbug.com/851799
https://crbug.com/847242
https://crbug.com/836885
https://crbug.com/835299
https://crbug.com/826019
https://crbug.com/666824
https://chromereleases.googleblog.com

ASAN is far from perfect

● ~2x Memory overhead
○ Shadow, Redzones, Quarantine
○ Also ~2x CPU and Code Size overhead

● Buffer overflows:
○ may jump over redzone

● Use-after-free
○ may “outlive” quarantine

● 64-bit architectures only

● Every aligned 16 bytes of memory have a 8-bit tag (TG=16, TS=8)
○ Other values for TG/TS are possible

● Every pointer has a tag in the top byte

● malloc/alloca tags memory & pointers with the same tag

● Loads/stores fail on tag mismatch

● Detects use-after-free and buffer-overflow (heap, stack, globals)

Memory Tagging (MT) in one slide

Memory Tagging (TG=16, TS=8)

char *p = new char[20]; // 0xab007fffffff1240

p[32] = … // heap-buffer-overflow

-32:-17 -16:-1 0:15 16:31 32:47 48:64

Memory Tagging (TG=16, TS=8)

char *p = new char[20]; // 0xab007fffffff1240

delete [] p; // ⬛ ⇒ ⬛

p[0] = … // heap-use-after-free

-32:-17 -16:-1 0:15 16:31 32:47 48:64

-32:-17 -16:-1 0:15 16:31 32:47 48:64

● Available in SPARC M7/M8 CPUs since ~2016

● TG=64, TS=4

● Tl;Dr:
○ works great
○ low CPU overhead, but forces malloc to align by 64
○ heap bugs only (no stack-buffer-overflows)

SPARC ADI

HWASAN (HardWare-assisted ASAN, Clang/LLVM)
● AArch64-only, needs top-byte-ignore
● TG=16, TS=8
● 2x CPU, 6% RAM, ~2.5x code size

// int foo(int *a) { return *a; }

// clang -O2 --target=aarch64-linux -fsanitize=hwaddress -c load.c

 0: 08 dc 44 d3 ubfx x8, x0, #4, #52 // shadow address

 4: 08 01 40 39 ldrb w8, [x8] // load shadow

 8: 09 fc 78 d3 lsr x9, x0, #56 // address tag

 c: 3f 01 08 6b cmp w9, w8 // compare tags

 10: 61 00 00 54 b.ne #12 // jump on mismatch

 14: 00 00 40 b9 ldr w0, [x0] // original load

 18: c0 03 5f d6 ret

 1c: 40 20 21 d4 brk #0x902 // trap

https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/ch12s05s01.html

MT vs ASAN

● MT:
○ Small RAM overhead

■ 6% with TG=16 TS=8
■ 0.7% with TG=64 TS=4

○ Detection of buffer overflows far from bounds
○ Detection of use-after-free long after deallocation
○ (opionally) initializes memory as a side effect

● ASAN:
○ Precise 1-byte buffer-overflow detection
○ More portable (32-bit, non-aarch64)

MT is good for

● Testing
○ Alternative to ASAN, consumes much less RAM

● Bug detection in production
○ Crowd-sourced bug detection
○ If CPU, RAM, Code size overheads are tolerable
○ SPARC ADI - yes, HWASAN - hm, maybe

● Security mitigation: likely yes.

Home work

Analyze you favourite exploit: is it preventable by MT?

Ask your CPU vendor to implement memory tagging

