A(nother) case for research on secure robot apps

Sam King
Back in 2011, Murph Finnicum presented a case for secure robot applications, but not much research has happened since then!
Robots are similar to traditional systems
Robots are different

- They move!
- Robots are inherently probabilistic
Example: Labrador app

Act like a dog: fetch a tennis ball, bark enthusiastically
def play_fetch():
 while Ball.is_near(User):
 wait(Ball)

 ball_location = locate_object(Ball)
 move_to(ball_location)
 pick_up_object(Ball)
 move_to(User.get_location)

 drop_object(Ball)
 play_sound("woof.mp3")
Permissions for robot apps?

<table>
<thead>
<tr>
<th>Permission</th>
<th>Use</th>
<th>Allow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement</td>
<td>Chase ball</td>
<td>✔️</td>
</tr>
<tr>
<td>Manipulation</td>
<td>Pick up ball</td>
<td>✔️</td>
</tr>
<tr>
<td>Camera</td>
<td>See the ball</td>
<td>✔️</td>
</tr>
<tr>
<td>Speakers</td>
<td>Bark</td>
<td>✔️</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>
Permissions fail to capture the subtleties of robots

<table>
<thead>
<tr>
<th>Permission</th>
<th>Use</th>
<th>Allow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement</td>
<td>Chase ball</td>
<td>☑</td>
</tr>
<tr>
<td>Manipulation</td>
<td>Pick up ball</td>
<td>☑</td>
</tr>
<tr>
<td>Camera</td>
<td>See the ball</td>
<td>☑</td>
</tr>
<tr>
<td>Speakers</td>
<td>Bark</td>
<td>☑</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>
Recent developments make robots more practical
Self driving DARPA cars brought us SLAM, deal with uncertainty well
XBOX kinect brought us cheap range sensors
def play_fetch():
 while Ball.is_near(User):
 wait(Ball)

 ball_location = locate_object(Ball)
 move_to(ball_location)
 pick_up_object(Ball)
 move_to(User.get_location)

 drop_object(Ball)
 play_sound("woof.mp3")
def play_fetch():
 while Ball.is_near(User):
 wait(Ball)

 ball_location = locate_object(Ball)
 move_to(ball_location)
 pick_up_object(Ball)
 move_to(User.get_location)

 drop_object(Ball)
 play_sound("woof.mp3")
GPU + object recognition CNN operate at higher level of abstraction
We’re used to probabilistic authentication, see my next talk for more context ;)

UPDATE
Lyft customers face potential hack from recycled phone numbers
The problem involves Lyft's use of cell phone numbers to verify customers' identities.
Conclusion

Let’s design notions of security from the start with robot apps
Discussion

Are there other recent advances (self driving cars) that can help provide insight into robot app security?

What are the main abstractions that you’d operate on, from a security perspective?

How to evaluate security for robot apps?
Graveyard
Animals in Research and Teaching at UC Davis

By Andy Fell on July 11, 2017 in Human & Animal Health

The use of animal models in biomedical research benefits human health and is strictly regulated. Breakthroughs in treatments for illnesses such as Alzheimer’s, heart disease, cancer, and HIV/AIDS would not have been possible without studies using animal models of disease.

Good scientific research requires strict adherence to the ethical and humane

Quick Summary

- Animal research benefits human health and is strictly regulated
- We provide the best possible care to animals in our charge
- UC Davis’ animal care program is internationally recognized and accredited

Related Stories

- Scientists Discover New Ebola Virus in Bats in Sierra Leone
 July 27, 2018
- How Experience Changes Basics of Memory Formation
 July 23, 2018
- Rhesus Macaque Model Offers Route to Study Zika Brain Pathology
 June 20, 2018

Top Stories

- Chancellor Gary S. May Shapes Future in His First Year
 August 3, 2018
- UC Davis Joins Network for International Science & Innovation

Robot apps are coming