
Software Engagement with Sleeping CPUs

Qi Zhu, Meng Zhu, Bo Wu, Xipeng Shen, Kai Shen, and Zhiying Wang
North Carolina State University, USA

University of Rochester, USA
Colorado School of Mines, USA

National University of Defense Technology, China

HotOS XV1



Energy Proportionality and CPU Sleeps

HotOS XV2

 Energy proportionality [Barroso and Hölzle 2007]
 Energy is consumed only when performing work.

 CPU hardware sleeps, idle states, or C states
 An idle CPU can save power by halting cycles, shutting off clocks, flushing 

and powering down caches, and even removing core voltage.
 On a dual-socket (24-cpu) Intel Haswell machine, active idle of all CPUs 

consume 91W (processor+DRAM) while C6 sleeps consume just 14W.

 The energy benefit is recognized [Le Sueur and Heiser 2011] and 
CPU sleeps are routinely utilized in existing systems
 But profound system implications in today’s context (emerging devices and 

workloads) require strong, principled software management.



Sleep Exits Are Not Instantaneous

HotOS XV3

 Deep CPU sleeps incur delays to reactivate
 Activating voltage/clocks, resuming cycles, loading flushed cachelines, …
 100usecs or more on modern multicore processors

 May add substantial (possibly multi-fold) delays to
 operations on emerging fast devices like SSDs and integrated GPUs
 fine-grained network services (e.g., in-memory hashtable) in a data center

 On-demand (interrupt-driven) resource activation is inadequate for 
high responsiveness.



Energy Disproportionality on Multicores

HotOS XV4

 Due to multicore resource sharing, power is not proportional to the 
number of active (non-sleeping) CPUs.

 Energy efficiency motivates new resource scheduling to shape 
desirable sleep patterns.



Anticipatory CPU Wakeups

HotOS XV5

 For high responsiveness, a sleeping CPU should wake up in advance 
so that it is immediately ready for work when needed.

 Main challenge: anticipate the timing of future work.
 When blocked on SSD I/O, future work is anticipated at the I/O completion 

time (modeled linearly on the I/O size) Anticipation in system
 Computation time on Turing-complete GPUs is hard to model, but many 

apps (iterative solvers, ML refinements) iterate over similar kernels many 
times and allow history-based prediction Anticipation by application

 On a network server, anticipation of future client requests may require 
client notification in advance Anticipation over network

 Related to anticipatory I/O [Iyer and Druschel 2001]
 Aiming for a binary decision, rather than anticipating the future event timing



A Simple Prototype

HotOS XV6

 We augment the block layer
 predict SSD I/O time using a linear model (on I/O size)
 request anticipatory CPU wakeup for synchronous I/O operation
 fully transparent to applications

 Activate all CPUs necessary for work
 CPU that’ll run the blocked application process
 CPU that’ll handle the I/O interrupt



Preliminary Evaluation

HotOS XV7

 24-CPU Intel Haswell machine, Samsung 850 PRO SSD



Energy‐Conserving Sleep Shaping

HotOS XV8

 Saving most power on multicore by simultaneous CPU sleeps of
 an entire multicore socket
 the high-power cluster on a heterogamous smartphone SOC

 Motivate energy-conserving sleep shaping
 Non-work-conserving CPU scheduling

 Exploit quality-of-service slacks for opportunities to delay work
 Not all work in a smartphone system critically affects user interaction.
 A server system may only be concerned about responses beyond a certain 

threshold.



Server Staged Bursts

HotOS XV9

 A server machine alternates between two phases–
 a staging phase that buffers requests without running them, and
 a burst phase that runs buffered requests in high parallelism.

 The staging proxy best runs on a low-power companion processor, 
or on a few designated proxies in a data center.

 A simple case evaluation: 
 Apache Solr search engine, searching Wikipedia pages,100 reqs/sec workload
 reduce power from 68 Watts to 53 Watts, while keeping peak responses 

below 500 msecs



Energy‐Conserving Sleep Shaping

HotOS XV10

 Main challenge: 
 When can work be delayed or slowed without hurting quality-of-service?

 In a smartphone system
 Quality-of-service is defined by responsiveness to a user interaction (from 

touch screen input to screen rendering of results).
 Identify causal dependencies and critical path in a user interaction through 

sync/communication events (pipes, sockets, signals, Android binders, …).
 During an I/O operation on the critical path, concurrent CPU work may be 

delayed or slowed without hurting user response.



Summary

HotOS XV11

 Energy proportionality has brought us aggressive CPU sleeps, but
 sleep exit time is causing significant latency increase on emerging fast devices 

(SSDs, integrated accelerators) and fine-grained network services
 on multicores, power is disproportionate to the number of active (non-

sleeping) CPUs

 Advocate new CPU resource management approaches
 anticipatory wakeups to minimize latency impact
 non-work-conserving sleep shaping to maximize energy efficiency

 Concept (particularly anticipatory wakeups) is applicable to other 
dynamic-power resources (memory, storage, …)


