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Energy Proportionality and CPU Sleeps

HotOS XV2

 Energy proportionality [Barroso and Hölzle 2007]
 Energy is consumed only when performing work.

 CPU hardware sleeps, idle states, or C states
 An idle CPU can save power by halting cycles, shutting off clocks, flushing 

and powering down caches, and even removing core voltage.
 On a dual-socket (24-cpu) Intel Haswell machine, active idle of all CPUs 

consume 91W (processor+DRAM) while C6 sleeps consume just 14W.

 The energy benefit is recognized [Le Sueur and Heiser 2011] and 
CPU sleeps are routinely utilized in existing systems
 But profound system implications in today’s context (emerging devices and 

workloads) require strong, principled software management.



Sleep Exits Are Not Instantaneous
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 Deep CPU sleeps incur delays to reactivate
 Activating voltage/clocks, resuming cycles, loading flushed cachelines, …
 100usecs or more on modern multicore processors

 May add substantial (possibly multi-fold) delays to
 operations on emerging fast devices like SSDs and integrated GPUs
 fine-grained network services (e.g., in-memory hashtable) in a data center

 On-demand (interrupt-driven) resource activation is inadequate for 
high responsiveness.



Energy Disproportionality on Multicores
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 Due to multicore resource sharing, power is not proportional to the 
number of active (non-sleeping) CPUs.

 Energy efficiency motivates new resource scheduling to shape 
desirable sleep patterns.



Anticipatory CPU Wakeups
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 For high responsiveness, a sleeping CPU should wake up in advance 
so that it is immediately ready for work when needed.

 Main challenge: anticipate the timing of future work.
 When blocked on SSD I/O, future work is anticipated at the I/O completion 

time (modeled linearly on the I/O size) Anticipation in system
 Computation time on Turing-complete GPUs is hard to model, but many 

apps (iterative solvers, ML refinements) iterate over similar kernels many 
times and allow history-based prediction Anticipation by application

 On a network server, anticipation of future client requests may require 
client notification in advance Anticipation over network

 Related to anticipatory I/O [Iyer and Druschel 2001]
 Aiming for a binary decision, rather than anticipating the future event timing



A Simple Prototype
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 We augment the block layer
 predict SSD I/O time using a linear model (on I/O size)
 request anticipatory CPU wakeup for synchronous I/O operation
 fully transparent to applications

 Activate all CPUs necessary for work
 CPU that’ll run the blocked application process
 CPU that’ll handle the I/O interrupt



Preliminary Evaluation
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 24-CPU Intel Haswell machine, Samsung 850 PRO SSD



Energy‐Conserving Sleep Shaping
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 Saving most power on multicore by simultaneous CPU sleeps of
 an entire multicore socket
 the high-power cluster on a heterogamous smartphone SOC

 Motivate energy-conserving sleep shaping
 Non-work-conserving CPU scheduling

 Exploit quality-of-service slacks for opportunities to delay work
 Not all work in a smartphone system critically affects user interaction.
 A server system may only be concerned about responses beyond a certain 

threshold.



Server Staged Bursts
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 A server machine alternates between two phases–
 a staging phase that buffers requests without running them, and
 a burst phase that runs buffered requests in high parallelism.

 The staging proxy best runs on a low-power companion processor, 
or on a few designated proxies in a data center.

 A simple case evaluation: 
 Apache Solr search engine, searching Wikipedia pages,100 reqs/sec workload
 reduce power from 68 Watts to 53 Watts, while keeping peak responses 

below 500 msecs



Energy‐Conserving Sleep Shaping
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 Main challenge: 
 When can work be delayed or slowed without hurting quality-of-service?

 In a smartphone system
 Quality-of-service is defined by responsiveness to a user interaction (from 

touch screen input to screen rendering of results).
 Identify causal dependencies and critical path in a user interaction through 

sync/communication events (pipes, sockets, signals, Android binders, …).
 During an I/O operation on the critical path, concurrent CPU work may be 

delayed or slowed without hurting user response.



Summary
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 Energy proportionality has brought us aggressive CPU sleeps, but
 sleep exit time is causing significant latency increase on emerging fast devices 

(SSDs, integrated accelerators) and fine-grained network services
 on multicores, power is disproportionate to the number of active (non-

sleeping) CPUs

 Advocate new CPU resource management approaches
 anticipatory wakeups to minimize latency impact
 non-work-conserving sleep shaping to maximize energy efficiency

 Concept (particularly anticipatory wakeups) is applicable to other 
dynamic-power resources (memory, storage, …)


