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Why you should care 
about GARBAGE 

COLLECTION in Data 
Center Applications



Most Popular Languages 2015
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5 out of the top 6
languages popular in 
2015 use Garbage 
Collection (GC)



Popular Frameworks using GC
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GC used by Cloud Companies
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Why Managed Languages?

Productivity 
Gains

Avoiding
Bugs

Enable Certain
Optimizations
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[Targeting* Dynamic*Compilation*for* Embedded*Environments ,* Michael*Chen*and*Kunle Olukotun,*JVM’02]



What is the Cost of GC?
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• GC overhead workload and heap-size 
dependent, 5-20% on single machine

• In Distributed Applications, additional 
overheads emerge. Applications run a-
cross independent runtime systems:

ISCA’12: Cao et al.

Node #3 Node #4

RuntimeRuntime

Node #1 Node #2

RuntimeRuntime



Two Example Workloads

Throughput-oriented
Batch-style

Latency-sensitive
Interactive
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Spark Running PageRank
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PageRank on 56 GB 
Wikipedia web graph

8-node cluster



Spark Running PageRank
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Execution is divided 
into supersteps

8-node cluster



Spark Running PageRank
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Execution is divided 
into supersteps
Each superstep runs 
independent tasks

8-node cluster



Spark Running PageRank
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Red – Synchronization 
at end of superstep



Spark Running PageRank
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Green – Major GC Pause

Red – Synchronization 
at end of superstep

GC prevents superstep
from completing



Spark Running PageRank
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Execution stalls due to 
GC on other node

Different node



Impact on Superstep Times

White = No GC during superstep
Dark = One or more GCs (the darker the more GCs)

Nodes perform GC in
different supersteps
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Idea: Coordinate GC on different nodes

Trigger collection on all nodes at the 
when any one reaches a threshold

Policy: Stop-the-world Everywhere, STWE 
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Memory Occupancy over Time

Without STWE With STWE 18



Before

Impact of STWE Policy
Nodes perform GC in
same supersteps
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Overall improvement in 
execution time (~15%)
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YCSB 
Workload 
Generator

Cassandra with YCSB
4-node Cassandra Cluster
3-way replicated

Requests sent to arbitrary 
node; becomes coordinator
and contacts replicas to 
assemble quorum.
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Blue – mean latency 
over a 10ms window

Grey Bars – minor GC on 
any node in the cluster

Query Latencies over Time
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Blue – mean latency 
over a 10ms window

Grey Bars – minor GC on 
any node in the cluster

Query Latencies over Time
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1. Coordinator incurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

Sources of Stragglers
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1. Coordinator incurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

Sources of Stragglers
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GC-aware Work Distribution
Steer client requests to Cassandra 

nodes, avoiding ones that will need a 
minor collection soon
Policy: Request Steering, STEER
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YCSB 
Workload 
Generator

Steering Cassandra Requests

Monitor memory 
on all nodes

If one node is close to GC, 
send to other nodes instead
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YCSB 
Workload 
Generator

Steering Cassandra Requests

Monitor memory 
on all nodes

If one node is close to GC, 
send to other nodes instead>80% full
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YCSB 
Workload 
Generator

Steering Cassandra Requests

Monitor memory 
on all nodes

If one node is close to GC, 
send to other nodes instead>80% full
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Blue – without steering
Red – with steering

Impact of Request Steering
Reads Updates
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99.9 percentile:    3.3 ms -> 1.6 ms
Worst case:            83 ms -> 19 ms



Are These Problems Common?
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• GC problems affect a large 
number of applications

• Have existed since dawn of 
warehouse-scale computing

• Current surge of interest in 
both industry and academia 
(6 new papers in last 4 mo.)

SOSP ’01, Welsh et al.



Common Solutions

Rewrite at
lower level

Respond to
GC Pauses

Concurrent
Collectors
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Cinnober on: GC pause-free Java applications  
through orchestrated memory management

Cinnober’s latest innovation captures the best of 
two worlds in a single state-of-the-art solution:  
a functionality-rich trading system with  
consistently low latency.

Predictable low  
latency

Transaction flow example
1. Incoming transaction

A request is received by the primary node’s Ultra commu-
nication framework, providing pause-free processing. The 
transaction is assigned a sequence number and sent to the 
primary and standby servers for execution.

2. Primary request handling

A shared memory transport mechanism sends the transac-
tion to the primary server. Expected latency for shared mem-
ory communication is on the order of 300 nanoseconds.

3. Standby request handling

The incoming transaction is replicated to the correspond-
ing communication framework process on the standby 
side using RDMA (Remote Direct Memory Access) and from 
there to the standby execution server using shared memory 
transport. Expected latency for RDMA communication is on 
the order of 2-3 microseconds, depending on message size.

The communication framework sends an acknowledge-
ment message back to the primary node to verify that the 
standby has received it.

4. Business logic, responses and broadcasts

The primary and standby servers both execute the request 
in parallel and provide identical transaction responses and 
broadcasts. The responses are sent via the shared memory 
transport to the Ultra communication framework. The 
standby side sends the response to the primary side’s Ultra 
communication framework, again using RDMA communica-
tion.

5. Primary response handling

The primary side sends out the response as soon as it is 
received from either the primary or the standby, whichever 
arrives first.

This is the key to allowing orchestrated JVM pauses in the 
primary and standby servers.

Orchestration of JVM pauses
The Ultra communication framework handles the orches-
tration of JVM pauses.

Since the primary and standby servers execute the same 
code with essentially the same memory turnover behavior, 
the orchestration mechanism does not need to be overly 
complex. Measuring memory turnover at maximum trans-
action load, the orchestrator only needs to keep track of 
current memory usage and calculate when a garbage col-
lection should occur. The initial garbage collection for one of 
the servers is requested so that future garbage collections 
will occur with optimal time spacing.

Next step
Cinnober will publish an extensive white paper about or-
chestrated memory management in TRADExpress in con-
junction with the coming version release that is scheduled 
for the second quarter of 2014. 

• Rewrite in C/C++
• Use non-idiomatic 

language constructs

✘ Lose language 
advantages, lack 

of generality
✘ Substantial 
effort to adopt

✘ Performance 
overheads, still 

have pauses



Common Solutions

Rewrite at
lower level

Respond to
GC Pauses

Concurrent
collectors
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Cinnober on: GC pause-free Java applications  
through orchestrated memory management

Cinnober’s latest innovation captures the best of 
two worlds in a single state-of-the-art solution:  
a functionality-rich trading system with  
consistently low latency.

Predictable low  
latency

Transaction flow example
1. Incoming transaction

A request is received by the primary node’s Ultra commu-
nication framework, providing pause-free processing. The 
transaction is assigned a sequence number and sent to the 
primary and standby servers for execution.

2. Primary request handling

A shared memory transport mechanism sends the transac-
tion to the primary server. Expected latency for shared mem-
ory communication is on the order of 300 nanoseconds.

3. Standby request handling

The incoming transaction is replicated to the correspond-
ing communication framework process on the standby 
side using RDMA (Remote Direct Memory Access) and from 
there to the standby execution server using shared memory 
transport. Expected latency for RDMA communication is on 
the order of 2-3 microseconds, depending on message size.

The communication framework sends an acknowledge-
ment message back to the primary node to verify that the 
standby has received it.

4. Business logic, responses and broadcasts

The primary and standby servers both execute the request 
in parallel and provide identical transaction responses and 
broadcasts. The responses are sent via the shared memory 
transport to the Ultra communication framework. The 
standby side sends the response to the primary side’s Ultra 
communication framework, again using RDMA communica-
tion.

5. Primary response handling

The primary side sends out the response as soon as it is 
received from either the primary or the standby, whichever 
arrives first.

This is the key to allowing orchestrated JVM pauses in the 
primary and standby servers.

Orchestration of JVM pauses
The Ultra communication framework handles the orches-
tration of JVM pauses.

Since the primary and standby servers execute the same 
code with essentially the same memory turnover behavior, 
the orchestration mechanism does not need to be overly 
complex. Measuring memory turnover at maximum trans-
action load, the orchestrator only needs to keep track of 
current memory usage and calculate when a garbage col-
lection should occur. The initial garbage collection for one of 
the servers is requested so that future garbage collections 
will occur with optimal time spacing.

Next step
Cinnober will publish an extensive white paper about or-
chestrated memory management in TRADExpress in con-
junction with the coming version release that is scheduled 
for the second quarter of 2014. 

• Rewrite in C/C++
• Use non-idiomatic 

language constructs

✘ Lose language 
advantages

✘ Substantial 
effort to adopt

✘ Performance 
Overheads

No general, widely 
adopted solution!



The problem is not GC, it is
language runtime system coordination
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Current Approach
Language Runtime Systems are 

completely independent (not just GC)
Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntime
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Current Approach

Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Language Runtime Systems are 
completely independent (not just GC)

36



Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Lack of
Coordination

Current Approach
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Language Runtime Systems are 
completely independent (not just GC)



Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Lack of
Coordination

Redundancy
JIT JIT

Current Approach
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Language Runtime Systems are 
completely independent (not just GC)



Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

Commodity OS

App

RTIntra-node
Interference

Lack of
Coordination

RedundancyElasticity
App

RT

App

RT

Current Approach
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Language Runtime Systems are 
completely independent (not just GC)



Holistic Runtime Systems
Apply the Distributed OS Ideas to design 
a Distributed Language Runtime System

Cluster Scheduler

App #3 App #4

RuntimeRuntime

App #1 App #2

RuntimeRuntime
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Holistic Runtime Systems
Apply the Distributed OS Ideas to design 
a Distributed Language Runtime System

Cluster Scheduler

App #3 App #4App #1 App #2
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Distributed Runtime Holistic
Runtime
SystemRuntimeRuntimeRuntimeRuntime



Our Prototype
• Coordinated runtime decisions using 

a feedback loop with dist. consensus
• Configured by Policy (written in DSL)
• Drop-in replacement for Java VM
• No modifying of application required
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System Design

Hotspot JVM Hotspot JVM

Application Node 0 Application Node 1

Me
mo
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Plan,
Reconfiguration,
State updates

User-supplied
Policy

Ho
lis

tic
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nt
im

e S
ys
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m

Monitor Monitor

State State
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Why This Approach?
• Easy to adopt (just pick policy, almost 

no configuration required)
• Minimally invasive to runtime system
• Expressive (can express a large range 

of GC coordination policies)
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Our plan is to make the system available 
as open source
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Would you use it?
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Thank you! Any Questions?

Martin Maas, Tim Harris, Krste Asanovic, John Kubiatowicz
{maas,krste,kubitron}@eecs.berkeley.edu timothy.l.harris@oracle.com

Work started while at Oracle Labs, Cambridge.


