Elastic Memory: Bring Elasticity Back to In-Memory Big Data Analytics

May 18, 2015

Byung-Gon Chun
Seoul National University
(cmslab.snu.ac.kr)

Joint work with Joo Seong Jeong, Woo-Yeon Lee, Yunseong Lee, Youngseok Yang, Brian Cho
Elastic Big Data Analytics Jobs

- MapReduce/DAG jobs execute on a runtime that supports elastic scale-out execution.

- Distinct MapReduce/DAG jobs run together on a shared cluster, thus improving utilization.

- New types of in-memory data analytics do not fit well to this model:
 - The interactive query system does not share resources even when the system is idle.
New Types of In-Memory Data Analytics: Interactive Query
The Case for Elasticity: Interactive Query

• Scale-out
 – The workers may spill data to disks when they do not have enough memory resources => expand memory resources to perform in-memory processing

• Scale-in
 – The workers hold on to their resources even while they remain idle during periods without client queries => shrink resources to mitigate reduced cluster utilization
New Types of In-Memory Data Analytics: Machine Learning

Iterative computation

Master

Worker
The Case for Elasticity: Machine Learning

• Scale-in
 – The job is communication heavy => shrink the number of machines to reduce communication overheads

• Scale-out
 – The job is computation heavy => allocate more memory in other machines to exploit computation parallelism
Elastic Memory (EM)

- Abstraction that provides “elastic memory” by dynamically expanding and shrinking memory resources and moving memory state
 - Mechanisms for reconfiguring memory resources and state
 - Policies for automating reconfiguration
State Representation

Container0

Subset\(\text{type}_A\):
- A0
- A1
- A5
- A6

Subset\(\text{type}_B\):
- B0
- B1

Container1

Subset\(\text{type}_A\):
- A2
- A3
- A4

Subset\(\text{type}_C\):
- C2
- C3

UNIT
- A0
- A1
- A2
- A3
- A4
- A5
- A6
Primitives for Reconfiguring State

- Add
- Delete
- Resize
Primitives for Reconfiguring State
Profiling

• Each worker’s metric tracker measures local metrics and sends them to the metric manager

• The metric manager aggregates and processes the received metrics
Policies

• Policy = Rules
• Rule = Condition, Actions
• Condition = Function(metrics)
• Action
 – Add <ResourceSpec>
 – Delete <SelectFunc>
 – Resize <SelectFunc> <ResourceSpec>
 – Merge <SelectFunc> <n>
 – Split <SelectFunc> <n>
 – Migrate <SelectFunc1> <SelectFunc2>
Elastic Interactive Query with EM: Unit, Metrics

• Unit: a row of a table

• Metrics
 – Requests for data per second
 – Memory utilization
 – Idle time
 – …
Elastic Interactive Query with EM: Policy

• Rule 1 (scale out)
 Condition: \(\text{avg}(\text{load}) > 0.8 \)
 Action: \(\text{Add}(\text{resource-spec}) \)

• Rule 2 (scale in)
 Condition: idle-time > 10 min
 Action: \(\text{Delete}(\text{top}(\text{idle-time})) \)
Distributed Machine Learning

- Start by loading data from disk and storing it to memory; access data in memory throughout the job execution
- Iterate
 - The workers run the algorithm independently on its partition of the data
 - The master aggregates the computation results and calculates a model.
 - This model is broadcast to the workers
Elastic Machine Learning with EM: Unit, Metrics

• Unit: an independent observation (e.g., a single number, vector, a matrix)

• Metrics
 – Task time per iteration
 – Computation time per iteration
 – Communication time per iteration
 – ...

Elastic Machine Learning with EM: Policy

- **Rule1 (straggler handling)**

 Condition: \(is_straggler(task\text{-}\text{iter}\text{-}\text{time}) \)

 Action: \(\text{Migrate}(\text{top1}(task\text{-}\text{iter}\text{-}\text{time}), \text{bottom1}(task\text{-}\text{iter}\text{-}\text{time})) \)

- **Rule2 (scale-out)**

 Condition: \(avg(task\text{-}\text{comp}\text{-}\text{time}/task\text{-}\text{comm}\text{-}\text{time}) > TH1 \)

 Action: \(\text{Split}(\text{top1}(task\text{-}\text{comp}\text{-}\text{time}/task\text{-}\text{comm}\text{-}\text{time}), 2) \)

- **Rule3 (scale-in)**

 Condition: \(avg(task\text{-}\text{comp}\text{-}\text{time}/task\text{-}\text{comm}\text{-}\text{time}) < TH2 \)

 Action: \(\text{Merge}(\text{bottom2}(task\text{-}\text{comp}\text{-}\text{time}/task\text{-}\text{comm}\text{-}\text{time}), 2) \)
Elastic Machine Learning Framework

ML Algorithms
ML Abstraction
Optimizer/Runtime
Elastic Memory | Elastic Comm
Apache REEF

Meta-framework for big data systems
(http://reef.apache.incubator.org, SIGMOD 2015)
Current Status

• Building Elastic Memory on Apache REEF

• Building a new Elastic Machine Learning Framework that runs on Elastic Memory

• Exploring SparkSQL-like engines to work with Elastic Memory
Thank you!
Q & A