
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER, ROBERT ROSS, TIMOTHY ROSCOE

Distributing the Data Plane for Remote Storage

Access

With slides input from M. Besta!

spcl.inf.ethz.ch

@spcl_eth

 I’m an HPC (systems) guy

 Programming Models

 Performance Models

 Network (Models)

My outing

2

spcl.inf.ethz.ch

@spcl_eth

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

MEM

CPU

L2

RAM

GPU

MEM

CPU

L2

GPU

MEM

GPU

MEM

SCR SCR

RAM

SCR NVRAM

Disk Disk

NVRAM

3D MEM

L3

Disks Disks

SCR

3D MEM

SCM

SCM

Data movement is the new challenge!

Memory systems become more complex!

spcl.inf.ethz.ch

@spcl_eth

CPU CPU

NIC

CPU

NIC

CPU

NIC

RAM RAM

SCM

Disk Disk

SCM

CPU

RAM RAM

SCM

Disk Disk

SCM

NIC NIC

<1 us latency

>12 GB/s bandwidth

<100 ns latency

>300 GB/s bandwidth
~100 ns latency

>400 GB/s bandwidth

spcl.inf.ethz.ch

@spcl_eth

 Our use-cases:

 Advanced parallel programming (e.g., MPI-IO [1])

 Data analytics chains (e.g., DataPath [2], Niad [3])

 File systems are served through the CPU

 Access to remote persistent storage in a

closely-coupled computer cluster is one of

the main obstacles to scaling performance

 Huge overheads: Energy, Time, Cost

… but software is lacking behind.

NIC

MEM

CPU

[1]: Gropp, W., TH, Thakur, R., and Lusk, E. Using Advanced MPI: Modern Features of the Message-Passing Interface. MIT Press, Nov. 2014.

[2]: Arumugam, S. et al.. The DataPath System: A Data-centric Analytic Processing Engine for Large Data Warehouses. In SIGMOD’10

[3]: Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M. Naiad: A Timely Dataflow System. In SOSP’13

>>1 us latency

spcl.inf.ethz.ch

@spcl_eth

 Separating data and control plane

 Get the CPU/software out of the way!

 Software-defined IO (SDIO, cf. NASD [1], Aerie [2])

 We set up a network route right into the device!

 Key point is (direct) access to storage

 Allocation

 Read/Write

 Protection

 Caching

 Consistency, coherence, durability

 Our central research question:

 How can we design a fast software/hardware data plane for safe, secure,

direct remote access to persistent storage devices?

A (30-year-old) networking idea revived

NIC

MEM

CPU

[1]: Gibson, G., et al. A Cost-effective, High-bandwidth Storage Architecture. SIGPLAN Not. 33, 11 (Oct. 1998)

[2]: Volos, H., et al.. Aerie: Flex-ible File-system Interfaces to Storage-class Memory, EuroSys’14

<1 us latency

spcl.inf.ethz.ch

@spcl_eth

 Exokernel-like filesystem library

 Data path 100% in user-level

Manages metadata, data,

and coordination

 Data is stored in allocations

 An allocation …

 Is an area of main memory or on a storage device

Placed explicitly

 Can be created, opened, or closed

Using a central or distributed control plane

 Has a contiguous address space

Block translation implemented in the device

 Is the smallest unit of access control and sharing

Named in a global namespace

 Access through capabilities (e.g., IB PDs)

(1) Device allocations
RAM RAM

SCM

Disk Disk

SCM

CPU

NIC

A

B

C

VM A B C

spcl.inf.ethz.ch

@spcl_eth

 Allocations are accessed …

 Locally via MMU-mappings (cf. Aerie)

 Remotely via IOMMUs or other address translations

 Not all devices are part of the physical address space

 Mainly legacy …. two options:

1. Software fallback (monitor RDMA regions and keep consistency)

2. Use IOMMU logging schemes (cf. Active Access [1])

(2) Read/Write and protection

VM A B C

CPU

NIC

MMU

IOMMU

[1]: M. Besta, TH: Active Access: A Mechanism for High-Performance Distributed Data-Centric Computations, ACM ICS’15

B

spcl.inf.ethz.ch

@spcl_eth

 Software caching

 Explicit caching, similar to RMA programming

Allocate local cache and access it

 Can be application-specific or caching library (standard techniques)

 Hardware caching

 Set up local memory as cache for remote allocations

Use standard (e.g., LRU) replacement policies

 Could be implemented by an extended IOMMU

Would allocate incoming transactions in cache

(3) Caching

VM B
C

|

B

CPU

NIC

MMU

IOMMU

RAM

B

spcl.inf.ethz.ch

@spcl_eth

 Current RDMA does not support consistent atomic access

 At least not large enough

 We propose a weaker consistency model

 All read/write accesses are nonblocking!

 Arrange accesses into epochs separated by fence operations

Modified data is only valid at the end of an epoch

 The type determines the isolation level

Shared: only consistency after epoch ends

Exclusive: consistency + atomicity

Persistent: consistency + durability

Optimistic: consistency + atomicity but can fail

 Types can be combined

e.g., persistent + exclusive

 Implemented similar to other RMA programming models [1]

 May require remote flushes (in the worst case RPCs)

(4) Consistency and coherence

W(a)

R(a)

R(a)

[1]: TH, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, K. Underwood: Remote Memory Access Programming in MPI-3, ACM TOPC

P0

P1

P2

spcl.inf.ethz.ch

@spcl_eth

 Crash recovery

 Use transactional (optimistic, exclusive, persistent) epochs for metadata

 Must ensure that locks time out if processes disappear

 Scalability

 Scoping limits context of coherency/epochs (e.g., a shared file)

 Integration with programming model (e.g., MPI-3 RMA)

 Compatibility

 Provide standard library of user-level file systems

 POSIX consistency with single-operation exclusive, persistent epochs

 Magic byte in allocation allows automated “mounting” like files

Other filesystem requirements

spcl.inf.ethz.ch

@spcl_eth

Discussion

Merge the network transparently into the file system.

