Benchmarking In The Dark: On The Absence of Comprehensive Edge Datasets

Oleg Kolosov, Gala Yadgar
Technion

Sumit Maheshwari, Emina Soljanin
Rutgers University
MOTIVATION

Need a workload

Important for system research, design, and optimization
 - Define system design objectives
 - Identify optimization goals
 - Make appropriate tradeoffs
 - Evaluate and compare

Use case: Design and evaluation of an edge-based storage service

- Multiple providers
- Considerable heterogeneity
 Optimization not trivial

Susceptive to fluctuations
EXISTING WORKLOADS

- Existing data center workloads rarely reflect
 - Edge infrastructure
 - Edge application requirements
- In existing edge papers:
 - Some aspects are irrelevant
 - Some aspects can be modeled by general datasets
 - Some examples:

 Applications
 - App data is easy to obtain (HotEdge ’18, HotEdge ’19)

 Security & Privacy
 - System (SEC ’16, GLOBECOM ’17) and data (IEEE IRI ’14, GLOBECOM ’16) are trivial

 Mobility
 - Geolocation data is easy to obtain (TON Vol.25, SEC ’17)

 Infrastructure
 - System dataset is trivial, synthetic workloads are used (ICDCS ‘17, MECOMM ‘17)

 Our use case is focused on storage
 - Key aspects aren’t trivial

 There are no operational edge systems that can provide the desired workload

 Small number of deployed real edge systems
DATASETS AND ATTRIBUTES

The datasets we need:

<table>
<thead>
<tr>
<th>Storage</th>
<th>Compute</th>
<th>User/App.</th>
<th>Location</th>
<th>Architecture</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIU, Umass, MSR</td>
<td></td>
<td></td>
<td>ECMWF, UBC, FSL</td>
<td>FB, SNAP, Alexa</td>
<td></td>
</tr>
<tr>
<td>Austin, NYC, SFO</td>
<td></td>
<td></td>
<td>BORG, Azure, LANL</td>
<td>RIPE, CAIDA</td>
<td></td>
</tr>
</tbody>
</table>

< Data Object, Time, Location, Node >
The datasets we have:

<table>
<thead>
<tr>
<th>Datasets/Attributes</th>
<th>Storage</th>
<th>Compute</th>
<th>User/App.</th>
<th>Location</th>
<th>Architecture</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage workloads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIU, Umass, MSR...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS snapshots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMWF, UBC, FSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object Popularity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB, SNAP, Alexa...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin, NYC, SFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BORG, Azure, LANL...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Arch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIPE, CAIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device failures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backblaze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORKLOAD COMPOSITION

How to bridge the gap?
- Join attributes from several available datasets

NYC Hotspots
NYC Taxi Zones
NYC Yellow Taxis Trip Data

< Data Object, Node, Location, Time >

- Taxi drop-offs represent demand in a zone
- A ‘browsing session’ starts at a drop-off time and zone
- Starts at drop-off node_{h} - Random hotspot from the drop-off zone

Use case: Design and evaluation of an edge-based storage service
The ‘browsing session’

\[
\text{Trace of GET requests: } \langle \text{Data Object, Node, Location, Time} \rangle \text{ for } 0 \leq i < n. \quad \varepsilon \text{ – request rate within a session.}
\]
CHARACTERIZING THE SYSTEM AND ITS USERS

- The workloads are lightly correlated
- The workload composition is not random
GENERALIZATION

User Requests Across NYC

Alternatives

NYC Hotspots

NYC Taxi Zones

Refinements

Wikipedia Pages

NYC Yellow Taxis Trip Data

System Arch.

#Sessions / Arrival Times

Any Trace of Object Requests

Requests with Location

Finer Location Granularity

Subway Station Exists
SUMMARY

- Conclusions
 - The problem is not unique for this specific case (general problem)
 - Described important categories of attributes
 - Showed how partial datasets can be used to compose a workload

- Discussion
 - Is the absence of datasets really temporary?
 - Which basic workloads to use?
 - How can we leverage synthetic distributions?
 - How to generate realistic and useful compositions?

Thank you